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determined with the aid of Rayleigh Schroedinger perturbation theory,
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Hamiltonian. Techniques are developed for evaluating integrals
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order.

The perturbation energy through fifth order at the equilibrium
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variational calculations.
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CHAPTER !

INTRODUCTION

In principle_ the time-independent Schroedinger equation

combined with the Pauli exclusion principle is capable of

describing most molecular systems, in practice_ mathematical

difficulties associated with its solution have_ until quite

recently_ been practically insurmountable. The changing

complexion of the problem is attributable to the rapid

development of high speed electronic eomputors.

A. Approximate Solutions to Schroedin_er Equation

Various approximate methods for the solution of the

Schroedinger equation have been devised° These may be divided

roughly into two broad categories: the variational method

and perturbation theory°

Io Variation Method

The variational method depends upon the fact that

the expression

E _- <_-I _-_ I _ > (I.A-I)

where

(I.A.-2)



.e

is an upper limit to the lowest eigenvaiue or ground state

solution E Thus_ one can substitute a trial function
0

_(_,_.-. _) into Eq. (I _-i_ and minimize _ with respect to

each of the parameters _j/_j .... _ to get an approximation

to E
O

2. Perturbation Theo__._

!

According to the perturbation method_ the Hamiltonian

H is regarded as consisting of an unperturbed Hamiltonian Ho_

whose solution is ideally known_ and a perturbation _V_--_Oo

The energy and wavefunction are expanded in a power series in _ _

(I.A-3)

and substituted into the Schroedinger equation° The parameter

may or may not have physical significance; its essential role

is defining the various orders of perturbation° If physically

insignificant_ it is eventually replaced by unity°

Collecting in powers of _ and equating the coefficient

of each individ_aal power to zero results in the Rayleigh

Schroedinger perturbation equations:
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°

3

(I.A-5)

(- (_.A-6)

th
with the general n order equation given by

) (I .A-7)

Ideally_ the solutions to the zeroth order equation are known

exactly.

B. Historical

Quantum mechanical perturbation theory was originally

2
developed by Schroedinger in the last of a series of three

papers in 1926. Many early attempts were made to apply

perturbation theory to atomic and molecular energy

calculations_ but these were limited by a lack of adequate

computational techniques.

One of the earlier and more successful examples of its

application to atomic systems was the classic work of Hylleraas 3.

Using the reciprocal of the nuclear charge_ I/Z_ as an expansion



parameter_ he determined an energy for He through third order

which was in error by less than o01eVo

Perturbation theory was first applied to molecules by

Heitler and London4 in their famouscalculation on the hydrogen

molecule° Their zeroth order wave function for the singlet

ground state was given by

(I.B-I)

4

w

o

where u represents a Is orbital on nucleus a With the
a

aid of degenerate perturbation theory_ they showed that this

function was correct in the limit of infinite separation. Using

the electronic repulsion as a perturbation_ they determined a

dissociation energy of 3o14 eV_ which is in error by approximately

1.6 eVo

The Heitler-London calculation was ideally suited to

describing the hydrogen molecule at large separation since the

corresponding zeroth order wavefunction dissociated to the

exact solution. A perturbation calculation which gave the

5
correct solution in the limit of small R was that of Coulson

His zeroth order wave function was given by



o

where the molecular orbital _m) is a good approximation to

the H_ -l- eigenfunction. Using the electronic repulsion as a

perturbation_ he determined a dissociation energy of 2.581 eV.

In general_ the results of the molecular energy calculations

were not particularly encouraging. It was apparent that the

perturbation treatment would have to be extended to higher orders

before accurate energies could be obtained. This extension_

however_ was precluded by the lack of high speed computors and

adequate molecular integration techniques.

On the other hand, the variation method was demonstrably

6
capable of high accuracy. James and Coolidge performed a

variational calculation on H2 using a wave function which

explicitly contained the interelectronic separation r12 .

The dissociation energy they obtained was in error by less

than 0.02 eV. Thus_ primary emphasis was placed on the

variational method for determining molecular energies.

5

C. Recent Developments

A rejuvenation of interest in perturbation calculations

has been sparked by recent new developments in perturbation

I
theory. Among these developments are improved methods for

determining the perturbed wavefunctions. The classical method

of solving for the first order wave function is to expand it in
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terms of a complete set of zeroth order functions° However_

as shown by Dalgarno and Lewis7_ a closed form solution may

often be determined by substituting

(_.0-i)

into the first order equation_ Eq. (I.A-6), leading to a new

differential equation for F which is often more easily

solved than the original equation. For problems in which the

perturbation is not separable, such as I/r12, there has been

increased awareness of the fact that satisfactory results for

high order wave function and energies can be determined using

3

a variational technique such as that developed by Hylleraas.

It is also possible to combine the Dalgarno form of the

wavefunction with the Hylleraas principle° These techniques

are detailed in Chapter II.

The recent perturbation calculations have been primarily

8

on atomic systems° Many of these are outgrowths of Hylleraas's

He calculation. Scherr and Knight 9 have extended his

calculation to 15th order in the energy and obtained results

comparable in accuracy to the best variational c_culations.

Linderberg I0 and Coulson II have solved the Hartree Fock equation

of He through third order also using I/Z as an expansion

parameter. Hall and Rees 12 have treated diatomic hydrides using

L
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hydrogenic atomic orbitals as zeroth order wavefunctions.

D. Purpose of Present Investigation

Recent calculations on the hydrogen molecule ion

have demonstrated that highly accurate values for molecular

energies can be obtained using perturbation theory. See

Appendix_l. Motivated by these results we have determined the

ground state energy of H 2 _ treating the electronic interaction

as a per turbation to the remaining Hamiltonian. The energy

expansion is extended to a high enough order to give results

comparable to the most accurate variational calculations.

The first order wave function is determined by using the

Hylleraas variational principle which states that

where

with the trial functions _ being arbitrary.

Iv- ,IS o>
(I_D-2)

The proof of

this principle and extensions to higher orders are given in

Chapter II.
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Twotypes of basis sets are used in the expansion of the

trial function. One is of the Dalgarno form_ Eq. (I.D-I)j and
6

the other is similar to the Jamesand Coolidge trial function

A comparison of the two basis sets is given in Chapter IV.

The unperturbed wave function is taken to be the product

of two hydrogen molecule ion wavefunctions with the spin portion

factored out and neglected. Since the solutions of the hydrogen

molecule ion wave equation are known in analytic_ but not closed_

form_ efficient procedures for evaluating integrals containing

the H2+ functions are difficult to obtain. Such procedures_

however_ are essential to the calculation.

i. Comparison with He Isoelectronic Sequence

The present calculation is very similar to the He

calculation of Hylleraaso In order to compare the two

calculations_ we consider the Schroedinger equation for hydrogen

like molecules omitting internuclear repulsion:

Herej E is the electronic energy_ r12 is the distance

between the two electrons_ rai is the distance from nucleus

to electron i _ and Z is the charge on either nucleus.
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Equation (I.D-3) is expressed in atomic units where the unit of
O

length is the bohr (0.52917/A)_ the unit of energy the hartree

(27.20974eV)_ and the unit of charge, that of the electronj e-

Scaling the electronic coordinates by a factor Z allows

us to write Eq. (I.D-3) as follows:

T co,,. )
= Ece'? Ca'I

=ZT-

where _/----_ with /7_, /Tb_ and /']I_ defined in an

analogous manner. Expanding E/Z 2 in inverse powers of Z

(i.n-4)

gives

I l (i.D-.s)

Following Hylleraas_ we expand the He energy W in the form

t O0z_ _ _ _ _

I

where _ is the charge on the He nucleus. The essential

difference between the two expansions Eq.(l._-5) - (I.D-6)

in the Z dependence of the energy coefficients. The _m

functions of R' and hence implicit functions of

_o ....... , the _n are independent of Z

(I._.-6)

is

are

Z , while,
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In the limit of small R_ the electronic energy of the

hydrogen molecule becomesequal to that of helium_ thus;

E_O") -- W' (I.D-7)

t

Noting that __-- ___- , we find

- cO. (I.D-8)

2. Mathematical Justification of Perturbation Exoansion

The question arises as to whether there is any

mathematical justification for the energy expansion_ Eq. (I.D-5).

The answer is found in the important theorem by Rellich _3'_

which states that the Rayleigh-Schroedinger perturbation

series converges for sufficiently small values of the

expansion parameter if the unperturbed Hamiltonian is self-

adjo_nt and if two constants_ a and b can be found such that

V ,_ and //oCsatisfy the inequality

<v% v+> 4_ I,D-9)

for all functions

IA

in the domain of H Kato
o

has shown that this theorem is satisfied for atoms and

molecules if the perturbation V is the electron repulsion

part of the total potential.



CHAPTERI!

IHECRN

The method used in the present investigation of determining

the ground state energy of H2 by treating the electronic

repulsion energy as a pelturbation to the remaining Hamiltonian

is by no meansoriginal. The very first quantummechanical

calculations on this system were of a similar nature° However_

none of the earlier calcul_tions were carried out to a high

enough order to actually determlne the rate of convergence of

the energy expansiono Unless the energy coefficients are

calculated to at _e_st third order, erroneous conclusions may

be reached concerning the convergence of the series. In this

chapter_ the formalism required for a highly accurate determination

of expansion coefficients is developed° Manyof the equations

are similar to those of Scherr and Knight since this problem has

much in commonwith theirs.

A. Perturbation Formalism

In this secti3n_ the usual Rayieigh Schrodinger perturbation

equations are derived and the generalized Hylleraas variational

th
method for determining the n order perturbation wavefunctions

is discussed°

I. PerturDatign Equations

As shown in the introduction_ the hydrogen wave equation

ii



may be put into the form

2

2
[:I £

Now_ identifying / Z as a perturbation_

(IS.A-l)

V- _

to the zeroth order Hamiltonian

(ÁI.A-2)

2 z

/-/o- Z ('-_ -_. - --')
[=/ 2 rl_ n:a,_

allows us to write Eq. (II°A-I) in the form

(II.A-3)

(t-4 ,-,'-- v)_ - Z
Z z

(II.A-4)

Let us assume

powers of Z :

that _ and
may be expanded in inverse

(II.A-5)

and

E

Z 2

! I
(II.A-6)



Substituting these power series expansions into Eq. (II.A-4),

and ordering in powers of l/Z, results in the expression

13

# _o'_ _v'_, _c__),_--- (II.A-7)

where --//-_o'_/_O--__o and V i V-- _--/ .

If this series is properly convergent, in order for it to equal

zero for all values of l/Z, the coefficients of powers of I/Z

must vanish separately. Equating the coefficients to zero

leads to the Rayleigh Schrodinger Perturbation equations:

//oZ_o -O (II.A-8)

_o'_,+v'_-o (II.A-9)

_o'¢__ v "_,-6. ¢o- o (II.A-10)

and in general

n

d_ ___-0
/('-2..

(II.A-II)
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2. Variational Solution to Perturbed Equations.

The first order wave function_ _/ _ may be determined by

using the variational principle developed by Hylleraas. He

pointed out that

_Z _ _Z (II.A-12)

where

and _/ is arbitrary.

substituting

We can prove this principle by

into Eq. (II.A-13) giving

(II.A-15)

The term in _ vanishes because of Eq. (II.A-9) and the term

in S g
is positive because G O is the lowest eigenvalue of N O.
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Variational principles for the higher order corrections

may be determined conveniently using the method of Scherr and

Knight. We substitute the perturbation expansions for _ and

E into the variational expression

(II.A-16)

and order in inverse powers of Z resulting in

(II.A-17)
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Assuming that we know the exact solution to the zeroth order

equation the coefficient of Z° vanishes by Eq. (II.A-8) and

that of I/Z by Eq. (II.A-9).

infinity_ the coefficient of

the variational expression

Now_if we let Z go to
-2

becomesdominant leading to

w_t__ $ _ _m_r_,_ _, is known exactlyj the

-3 -2
coefficients of Z and Z vanish and the coefficient of

Z -4 becomes dominant giving

g. <¢o_¢,,>=4"_//-/o'/W_>+z<w,.iv

-_-,,4¢o_,#o,>
with

(II.A-20)

Minimization of

In general

results in an approximation to ,_
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<_l_'l£>+ z(,7.lv'l_._,>

(II.A-21)

with

(II.A-22)

and

(,-/',,/_>- 4_ / v"l ',/,%>

Z_ N

-z-' % Z 4_ I V.,
P=_- Z=_,-/, z"+'-T'_

(II.A-23)

where terms with negative indices are ignored. From these

equations_ it is clear that the energy through

order can be obtained knowing the wavefunction through nth order.

3. Normalization

Normalization conditions are required to completely

specify the wavefunction. We require that both the total

wavefunction P and +_,..,,ezeroth order function _ be
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normalized to unity. This leads to the following condition

on the various orders of perturbed wave functions:

(II.A-24)

B. Solution of Zeroth Order Equation

Since the variational expressions (Eqs. (II.A-18) - (II.A-23)

for determining the higher order corrections to the wave

function depend upon an exact knowledge of the zeroth order

function_ the solution of the zeroth order equation must be

determined with a high degree of accuracy. A primary source

of error in the earlier calculations mentioned in the intro-

duction was the use of inaccurate zeroth order wavefunctions.

We have expended considerable time and effort in an attempt

to completely eliminate this error.

Consider the zeroth order perturbation equation

 o,o (II.B-I)

where

(II.B-2)
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_tting_=__) leadstotwoequationso_thoform

!

(II. B-3)

where r a and rb are the distances from the two nuclei and

_/-- _ Equation (IIoB-3) is the Schrodinger equation

Z 17

for the hydrogen-molecule ion. Burrau first pointed out that

this equation is separable in confocal elliptic coordinate _ ,

and _ . The coordinates _ and _ are given by the

equations

(II. B-4)

and _ is the angle about the internuclear axis.

of the variable _ is from 1 to 00 while

-i to 1 .

Inverting Eqs. (II.B-4)leads to the relationships

The range

goes from

(II.B-5)

Thus

!

fT_ + '7

-__
_ 9a

(II. B-6)
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The Laplacian in confocal elliptic coordinates is given by

z 4-

-

(II.B-7)

20"

,° •

Substituting Eqs. (II.B-6) and (II.B-7) into Eq. (II.B-3) and

multiplying by

gives

4-

It is seen that by replacing

product function

(If.B-8)

(II.B-9)

Eq. (II.B-8) is separable into the three one-dimensional equations:
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= -_ (ZI.B-10)

+ I-c+ e_9_- ____t]_=o
(II.B-II)

and

(II.B-12)

where e2.- I _a_b / and C

..#..

The solution of the familiar

is a separation constant.

equation is

±f_,.g
_([(.,jOJ- e /'l__-O¢l_2, °-" (II.B-13)

19
To determine a solution to Eq. (II.B-II), following Hylleraas,

we expand the function H in terms of the associated Legendre

Polynomials:

where the Legendre Polynomial q is defined by
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i _ .e

l(,-x:)l
The expansion of H takes the form

(if.B-15)

.f =hnl

where the coefficients _ are constants, Substituting this

expression into Eq, (II.B-II) and simplifying with the aid of

(II.B-16)

the differential equation

-- z n l_l .. I r_l_i

d_ d_
,,._[_1

+_sc.e+,)-,.____:f i_ @9- o
we obtain

(II.B-17)

f =l_l
(I!.B-1R)

By successively applying the recursion formula

(II.B-19)

Eq. (II.B-18) becomes a simple series in the functions

whose coefficients must vanish due to the orthogonality of

these functions. We thus obtain a three term recursion relation
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(II. B-20)

with

6cldL

(z.e-3) cz _-O

7_

(z _-/_/+z)C.e+/,'nl+D /o
( 7__+ _) ( z.t+ s-)

7_

(II.B-21)

(II.B-22)

and

<2.e÷OCzz ¢.3)

It follows from Eq. (II.B-20) that

+ c.e-/_,l)(,e+l_O_
(2.e-O(z_+O a

(II.B-23)

where is the continued fraction

(II.B-24)

(II.B-25)

L_+q ---

The roots of Eq. (II.B-24) for a given _ and m are the

eigenvalues C .

The solution to the equation proceeds in a similar



20
fashion, It has been discussed by Jaffe and his derivation

sketched by Bates_ Ledsham.and Stewart. The solution is

expressed in the form

24-

_f_

,£

(II.B-26)

where

(II.B-27)

Substituting this expression into Eq. (II.B-12) leads to a

three-term recurrence relation for the g's :

(II.B-28)

where

_t = (e+,J (t+_+,) (II.B-29)

(¢t'- z_)t-c-_-z po--(_,_(_÷¢)(II.B-30)

and

---C_-/-O-)C_-I-O---_ ) (II.B-31)



. 25

It follows that

where _ is the continued fraction

(II.B-32)

whose roots for a given p _ m_and C are the eigenvalues

The relationship_ Eqo (lloB-27)_is then used to determine R

and hence _/ .

Bates, Ledshamand Stewart have tabulated ground state

solutions to the H2+ equation for a large number of R's.

Unfortunately, their calculation is accurate to only five places

in the energy° Weestimate a minimumof nine place accuracy

is necessary to completely eliminate any errors which might

result from the use of an inaccurate zeroth order wavefunction.

Therefore, we have written a program which is capable of this
+

accuracy and have used it to evaluate the H2 energy for

selected values of R o In Tables I_ II_ and III_ we have

listed the energy to nine significant figures along with accurate

values for the parameters K_--, p , C a h a and f. Only the

ground state solution_ where m = 0 _ has been tabulated.



C. First Order Energy

26

• i

%

The first order energy is determined from the expression

a,= <,oIvI,_> (if.c-l)

(_o ZSubstituting for and noting that in confocal elliptic

coordinates

where

8

<:iv- d _s<dOd <p

we find

2

s,#So

(i]:.c-2)

2

.., (_,-9,")c__)



27

The evaluation of this integral is complicated by the presence

of the factor I/r12 in the integrand,which must be expanded in

a complete set of orthogonal polynomials_ and by the complex

functional form of the zeroth order wave function.

Since methods for evaluating integrals of the form

(II.C-3)

are well-known_ it was reasoned that if _ could be expanded in

a power series in _ and _ without loss in accuracy, the

first order energy could be expressed in terms of the G's which

could then be evaluated by any of a number of methods. This

approach was attempted. The function _ was first approximated

21

by a series of Chebyshev polynomials which was then ordered

in powers of _ and _ resulting in:

n

(if.c-4)

where Co and _ are expansion coefficients. This series

was subsequently substituted into Eq. (II.C-I) leading to the

L___'t'_ i+11 i_t--I<, /

expression for the first order energy

_ /R r m_

(II.C-5)
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×(e

However_ when this method was prograa_ned_ it was found that

the sum in Eq. (I!.C-5) took far too long to evaluate. This

was due partly to the slow convergence of the sum and partly to

the necessity of evaluating a large number of G's.

Searching for a more efficient approach_ numerical

integration scheme for determining "_l was devised. Part

of this scheme followed closely a method which Ruedenberg

used for evaluating the G's. (We will not consider this

approach in detail since it is a specific case of still a

more general scheme which was consequently developed.) Using

this numerical integration method_ it was now possible to

determine E i quickly and efficiently. However_ there was

dissatisfaction in the fact that a separate program w_s needed

for its determination.

The method which was eventually used for determining

the first order energy was based on the development of a

generalized procedure for determining the primitive integrals

[2

Z Z z "'_ O/z-

x L (g,- ,)( _,.)(_- _, )6-q,)j ce_(_, -_)

(it.c-6)
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Note that the zeroth order wave function is incorporated into

this definition. This fact is of key importance since it leads

to extreme simplifications in the organization of the overall

problem. One simplification is immediately obvious. The

first order energy maybe written trivially as

_, - iw_.(zooo,-o--ie,3<oozo_-,) (if.c-7)

The details of the evaluation of the primitive integrals are

given in Chapter III.

At this point, it is convenient to give the expression

for the zeroth order normalization integrals in terms of

primitive integrals. We have

<_01_ >- MS<zoooo)-r"S/Coozoo)(11.c-8)

D. Determination of Hi_her Order Wave Functions

In this section, generalized matrix equations for determining

corrections to the zeroth order wave function are presented.

Two possible choices of basis sets for substituting into these

equations are considered.
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i. General Formalism

The initial step in the determination of the high order

corrections to the wavefunction is to expand them in terms of

a complete set of basis functions _ _

(II.D-I)

th
Substitution of this expansion into the generalized n order

variational expressionj Eq. (IIoA-21)j leads to the matrix

equation:

whet e

(II.D--2)

- _<'j- - _o 3<.j (II.D-2)

- (II.D-4)
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(II.D-5)

and

(_°') (_o,+

= <,¢,,i+o> - <'o (II.D-6)

(II.D-7)

Partial differentiation of Eq. (IioD-2) with respect to the

C I_" result_ in the matrix equation:

_1(Lc,o / _c,,-,)

D--I

p=z

(II.D-8)

/
Assuming that _ is non=singular_ we may solve for the

th
n order coefficients:

(II.D-9)
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where

h-I (_ _F_.I)

+ Z Gr
f=z

The energy of order

into Eq. (II.D-2).

the expression:

2n is determined by substituting Eq. (II.D-9)

To determine the Odd order energies we use

p=z c=_+1-p

The library subroutine Matinv was used to perform the matrix

inversion in Eq. (II.D-9). It uses the Jordan method to

reduce the matrix _ to the identity matrix _. through

a succession of elementary transformations. A search is made

to maximize the pivot element_ and rows are interchanged to

put the pivot element on the diagonal° Equations (II.D-2)

to (II.D-II),were programmed in general_ allowing the deter-

mination of the energy coefficients to as high an order as

desired.

2. Choice of Basis Set

Two types of basis sets

We refer to these as the H

use as the H

t_ been investigated.have

set and the F set and to their

method and the F method. Briefly_ elements
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of the H set are composedof powers of confocal elliptic

coordinates and r12 multiplied by an exponential factor.

In the F set_ the exponential is replaced by the zeroth

order wave function. It is felt that the second choice has

certain advantages over the first in perturbation calculations

of this type. The equations relating to these particular choices

are derived in the next two sections. Their relative merits

are discussed in Chapter IV.

E. Evaluation of Matrix Elements

A major advance in the treatment of the hydrogen molecule
23

was made by James and Coolidge when they introduced the

interelectronic separation r12 explicitly into the variation

function. Their trial function is given by

(II.E-I)

with

(II.E-3)
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io Basis Set H

These functions are used in Eqo (IIoD-i) as a basis set,

the H set_ for expanding the nth order wave functions° The

matrix elements resulting from their substitution into the

variational expressions for the higher order perturbation

corrections must be expressed in terms of the primitive integral

The first element evaluated is H.... Expanding Eq. (II.D-3)
=j

with the use of Eqo (IIoE-2) gives

In the evaluation of <_I_o_ _t_)the derivation of Ko]os24 and

Roothaan who calculated accurate electronic wave functions for

the hydrogen molecule by extending the work of Jamesand

Coolidge is followed closely° To begin with_ consider the

zeroth order Hamiltonian

= L7 c,) /jo_ (II.E-5)

where

_J

"'_o : - vi. _ , ' _.___
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Since the wave function is symmetric with respect to electrons

one and two, the Hamiltonian_ Eq. (II.E-5), may be written as

(II.E-7)

Thus :

- <F_ _ l_olp'_'_'W/>

(II.E-8)

The contribution of the Laplacian to the integral is given by:

_<ip_.n,_/,,.IV,zIf,'@'n_.'>

X

where

-o(_; n
_P_°_'_- e _[ ,_,.

(II.E-9)

(Ii.E-IO)
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Let us denote the _eeond lntegral in Eqo (IIoE-9) by

(II.E-II)

Foli.owing Kelos _nd Rc_tbaaz-_,the :integz:al :Ls transformed in the

'I ifollow ng manner :

(,) %...(,)/_ e, n,_ ].L v, n,. ]

-I-

(II.]E-!2)

C ont inu ing

EV,q_p.0)]- EV,%,,-,,c,On,.

+-p/_'c-fpn ¢') _v'-' ¢':) r-/,_+_'''-

-ff__'(4_,,,o) v, (¢_ c,_7. Lv, n,,. (]I°E-13)
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By Green's theorem_

J --_ ___ _+pt- ac;,v, q_,,,,.,.c',_.V(%,.,,',)n,,. 1 (II.E-14)

where the surface integral of "rT--_-(I)r/'7- V _,,.,Ct] vanishes.

Application of this equation to I results in, after some

manipulation_

"c_r,,c,) c_ff,, , co) n,
_+p_ C z

11.

÷f_ @,.. c,) v,_-g._,) ] n,_ (II.E-15)

This expression is valid for the cases where either/EA, on /_A_I

equals zero. Where both parameters vanish the interpretation

W_- /x/ I

is made. The other contribution to

simply evaluated. By Eq° t..... _

<_I_oI_'>

(II.E-16)

is



<_l-z_ __z I_>-_8_<_i _, IK> (floE-,17)

Combining Eqso (IIoE-17) and (lloE-15)and applying the formula

for the Laplacian in confoc_l elliptic coordinates given in

Eq. (II.B-7) results in the final expression:

¢p,,f,T p

-Z

(LI.E-!8)
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with

and

The evaluation cf the remainlng matrix elements

Substituting Eqo (IIoE-2) into Eqs.straightforward°

(II.D-7) leads to

is

(II.D-3) -

k = <4,-Iv/¢o>,,-<'_[i v/@o> (II.E-21)

and

(II.E-22)

The elements on the right hand side of these equations may be

written immediately in terms of the primitive integrals:
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(II.E-24)

(II.E-25)

and

(II.E. 26)

2. Basis Spt F

A popular method_ generally associated with Dalgarno and

8
Lewis , for facilitating the analytical determination of the

first order wave function is to __ite * in the form:

@,- (II.E.27)

The substitution of this expression into the first order

perturbation equation_ Eqo (IIoA-9)_ produces a differential

equation for F which is often more susceptible to solution

than the equation for ("_1 The question arises" are there

any advantages to be gained by incorporating the zeroth order

wavefunction in the higher order corrections when using a
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variational principle to solve the perturbation equations.

In order to find out_ the nth order wave function is written

in the form

&
(II.E-28)

where

(II.E-29)

and

(II.E-30)

The wavefunction expansion is then substituted into the

variation expression, Eq. (ll.D-2)_and the corresponding

matrix elements are evaluated.

The first matrix element considered is

(II.E-31)
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The integrals on the right of Eqo iii!_E-3i) maybe reduced in

the following manner:

Q - <,-/-,oI _c B.B_"+z..-,-¢_÷'._ I'A>
(II.E-32)

The integrand is now written in the for_:r_

_ ... t_._o'L "-&

(II.E-33)

Integrating Eq. (II.E-33)_ applying Green's theorem:and

noting that the surface integral of ,_o_f_ / vanishes_

leads to

(II. E- 34)

In order to evaluate Eqo (II.E_34)_ an expression for

the del operator in confocal ellipt-Lc coordinates is

required :
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(II. E- 35)
It is convenient to define

(II. E-36)

Substituting Eq. (II.E-36) into Eq. (II.E-34) gives

It is thus necessary to evaluate the four integrals

(II.E-38)

(II.E-39)
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and

(II .E-41)

The first of these i.nteg;'als9 upon application of Eq. (II.E-35),

becomes

m,= 4- <q.,oIf.C'L 7- --' ' , "--_- , -_1_\

The integral :is e_i]y evaluated° Application of the

del operator to n1_ _es._Its _.n the expression

/ /.,..if, C-a.
:G - 4%z ffff n,, t%> (II.E-43)

The integrals 13 and I& are evaiu_ted together. Combining

Eqo (iIoE-40) and (If,E-41) gives

-+.,_' ¢l"w,_ ). V, n,_. (II.E-44)
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Introduclng the relationship

(II.E-45)

and applying the laplacian.Eqo (IIoE-35)_ leads to

>7, (,-):)
where (II,E-46)

- (II.E-47)

Substituting the integrals llJ I2_ I3_ and 14 into Eq. (II.E-37)

and expressing the results in terms of the primitive integrals
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,f

z nn" M?¢ff4,a--2,7_,,_)]

(II. E-48 )

where

/3-_p.f,'-,'-_ 'p
(II.E-49)
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The re_ining matri>: elements

-- into EqSo (iloD-2)

determined by substituting

(IIoD-7), are"

(ii.E-5o)

(II.E-51)

(II.E-52)

and

(II.E-53)

Comparison of the integrals on the right of these equations

with Eqo (II.C-6) leads to the final expressions,

(II.E-54)
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(II.E-56)

and

(II.E-57)

Notice that all macrLx elements are expres_ible as combinations

of _(_/7/2_/_L) o In contrs:_t, the matrix elements

corr'esponding to the H Set requited the additional sets of

integrals _i°_f_fT/_/_) and /_o°(#_I-/._/¢_) o
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CHAPTER Iii

COMPUI_TI ONA L

in this chapter_ the p_imxtive _ _ _ are evaluatedintegra_s

Because of the complex functlcnal form of the hydrogen molecular

ion eigenfunctions_ this evaluation is quite difficult. Although

the theory of two center integrals is highly developed_ it is

rather specialized in that most investigators have been primarily

interested in the _robiems _ss,_ciated with integrations over

atomic Slater orbi,tals'o Unfortunately_ the integrands in the

present problem contain functions of e more complex nature.

Our first tho_cght was to expand the eigenfunction in terms

of Chebyshev pclynomia!_ and to order the resulting expansion

in powers of _ and 9 _he advantage of such an approach

is that it allows the primitlve integrals to be expressed in

terms of well known integrals which have been thoroughly

investigated° Unfort_nately_ this method turned out to be

so inefficient and time consaming that it was impossible to

obtain high accuracy using a reasonable amount of computing time.

In search of a better approach_ existing methods available

for evaluating the usual two center exchange integrals were

analyzed° It was discovered that _ formalism developed by

Ruedenberg could be extended to allow efficient evaluation of

i/r12 integrals over arbitrary well behaved functions_ provided



they were separebie in confocal elliptic coordinates. This

method was consequently _dopted.

The general procedure fo_ evaluating the primitive integrals

is to first reduce the power of r12 to either zero or minus

one depending on whether it was initi_lly even or odd° These

two cases are then treated separately°

The integrals_ which contain no power of r12 in the

integrand are i_r_ediate]y sep_raBle into six one dimensional

integrals. The integrations over the _ and _ coordinates

are performed analytic_11y_ The remaining integrations are

accomplished_ except for special cases_ by numerical techniques.

It is in the second case where the integrands contain

i/r12 - that dif±iculties _re encounteredo The preliminary

step in the eval_ation of these integrals is to expand i/r12

in terms of infinite sets of orthogonal polynomials° The

integrals ove_ _he _ _nd _ coordinates may be evaluated

analytically° The integration over the _ coordinate is

accomplished by a generalized Ruedenberg technique.

50

Ao Evaluation of Primitive Intea____s

For convenlence_ we rewrite the primitive integrals

Eq_, (II.C-6) in the form



/
!

!

°
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where the quantities f_ g_ and _ are defined in the following

manner :

= L c_,_,)C_÷O] _

and

x_
/

f

_- z',_ _ __,>_,<_
_-o

(III.A-2)

(III.A-3)

(III.A-4)

As a preliminary step in the evaluation of A,ivl__ _ odd powers

of r12 are reduced to minus one and even powers to zero. This

is accomplished by substituting the expression for r!2 in

confocal elliptic coordinates_ Eq. (III.A-I)_ into Eq. (II.E-45)

resulting in the relationship_
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Thus it is only necessary to consider the two sets of integrals

/_(p_rT/_ o) and /_P(p_.[-l,,_ --IJ. These integrals

are evaluated in the next two sections.

I. Reduction of /_)(? _/7 /_, OJ

As shown in the last sectionj all integrals containing

even powers of r12 may be reduced to the set of integrals

(III.A-6)

Since these integrals do not contain the coordinate_ rl2 ,

they are relatively easy to evaluate. The integration over

the coordinates _i and __ is accomplished analytically.
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For even values of

(III.A-7)

For odd values of _ the integral vanishes. Here, the

binomial expansion _K.) is defined by the relationship:

(;)- <: (III.A-8)

Let us define the integral,

(III.A-9)

The substitution of Eq. (IIIoA-7) and Eq. (III.A-9) into

Eqo (IIIoA-6) results, for even values of _ , in the expression

¢_,) ['¢,.I
9-

(1 il.A-10)

For odd values of _ _ the integral vanishes.

For convenience_ let us u_,= .,,_ .........



54 q

(III.A-II)

and

l

(III.A-12)

These integrals may be reduced by expanding 1_ \l__._Z i_ ." and

(j__)_4 with the aid of the binomial theorem, leading to

K

_ (/7) -- Z (--I_ A._ (p_-O--_] (III.A-13)

and

where the basic integrals _j[ and _j[ are defined by

(III.A-14)

(III.A-15)
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and

(III.A-16)

+ eigenfunction isSince the H2

vanishes for odd values of s

an expression for _p_/7/_O) of the form

even in _. the integral _

Combining results leads to

(III.A-17)

where

(I_I.A-IS)

a. Calculation of B_ (j)

The integrals B (j) are evaluated for three

separate values of _ Consider the case where_ = 0 .

Here, for even values of _ :
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_- (III.A-19)

For odd values of _ _ the integral vanishes.

The second case considered is_ = I Here

(III.A-20)

Interchanging the sum_nationand integration gives

(III.A-21)

where

(III.A-22)

[

The £_ exist only for even values of m + j They

are reduced by making use of the recursion formula (Eq. II.B-19)

which, when substituted into Eqo (IIIoA-22) leads to the

recursion relation

(III .A-23)
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All integrals are subsequently expressed in terms of

(III.A-24)

and

(III.A-25)

Finally, we consider the remaining value_ _=2

this case

For

(III.A-26)

Performing the multiplication and interchanging the summation

and integration gives

Q

where the integral &_ is defined by

(III.A-27)

(III.A-28)

Substituting Eq. (II.B-19) into Eqo (III.A-28) leads to the
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recur sion relation

fwhich is used to reduce the _ to either

(III.A-29)

(III.A-30)

or

(III.A-31)

An alternate method of determining the KQs when / is not

equal to zero s is to perform the integration numerically using

the method of Gaussian quadrature° Again_ this would be

slightly more inefficient than the analytical approach but

would allow for greater generality in the application of the

computor programs.

b.Calculationof

The integral _ is treated separately for three

different values of _ For the case / = 0

(III.A-32)



The integrals Ao_') are often encountered in molecular

calculations. They are usually denoted by A_(2_)o Their

evaluation is accomplished by the reduction to

_ZD(

AO_O) -- _ (IIIOA-33)

Z=<

using the recursion formula

' [4V)- (III°A-34)

When _ is not equal to zero, the complicated form of

the integrands in Eq. (IIIoA-15) makes the analytical integration

of the A_r_ impractical but not impossible. They may be

evaluated analytically by expanding the integrands using the

binomial expansion and the expressing the results in terms of

"21

the incomplete Gamma Function° However_ a superior approach

from the standpoint of both accuracy and generality is numerical

quadrature_ using Laguerre Gauss formalism.

2. Reduction of M.,IOC p_/--,)

The only integrals remaining to be calculated are

where

(TII.A-35)

59
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Z,

Reduction of Eqo (IlioA-36) is accomplished by the introduction

of the Neumann expansion

' ¼Z
Z=_ = -

(III.A-37)

where _ and ._ the unno__malized associated

Legendre function of the first and second kind_ respectively_

are defined by the relations DiP _c:

(xj - IE_-_) l cl__
dX _

p_O( ) (III.A- 38)
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and

d×
(III.A-39)

where

z%! a--x_
(III.A-40)

and

(III oA-41)

The normalized associated legendre function is given by

_'_{_ -- _ _Z-_*J_ C_--_ ),[7.._+_). f J;/?"

f_ I_l
(!!IOA-42)

Substituting the Neumann expansion into Eq. (Iii.A-36)

and regreuping terms leeds to the expression
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B _--o _,-_-;;I

x Jo de6 d_. e

I

_"J( c6-@,..)
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I

ir

'7,

,<f /a,,I - lift x

(III.A-43)

The integrations overt the (_ coord:inates are accomplished

readily,, For v_!_es of' rr_,,_rd _J set:isfying the conditions

__ LJ _ with _.. eve_,

Z:rr-! "_TF" D
.,o d_, dW_ eJcpLtv,.,(ce,-_)]c_ (ce_-ce_.)

;;2._
(III.A-44)
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For all other values ol m and _ the integral vanishes.

Defining the _u×lliary f_nctions

J_
(III.A-45)

u

(III.A-46)

and

_c_i_) - J

O otherwise

(III.A-47)

and making use of Eqo (!IIOA=44) results in the expression

(III.A-48)
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Metheds for the eve.!u:eti_n ¢f the integrals _l_ and ,-_°t A

are presented in the next two se_tz_.,__°_=o

---v_,_C aa. Calculation of ('_a,,A )

The preliminary step in the determination of the

integrals "-_l,A is to reduce them to

/

, C__,7-,.J'>,,,___ d;:_>,-,,,.>,it_)

,¢r__m<_./7.<-7:7_,_
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le

using the recursion relation_

(III.A-50)

The _re cen._id.ered separately for three different

values of

Case i: _=O

This is the s:imDiest of the three cases in that the H2+

function is absent frcm the integra'r._d:

/

_ z)_/7. ,,,,,I (III.A-51)
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Introducing the expression f__r the normalized associated Legendre

Function, Eqo (IIIoA-42}_ !eads to

(III.A-52)

where

I

(III.A-53)

These integrals are often encountered in atomic and molecular

27

calculations° Kotmni's solution is given by:

z,4- .... (_÷n-_).,-3 ....(,_-_',_-p+0

(Ill .A-54)

_4-_+_ __even

__ O otherwise

This form for the K_ _ is convenient if only a few particular

integrals are desired, However) -an _>proach which is better

suited for use with high speed computors depends upon the

recursion relation_

-,
(III.A-55)
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which is derived by substit_tlng inno Eqo (IIIOA-53) the

relationship for varying the order of associated Legendre
26

pc,lynomiais

(e) - (-z..'-_,) (--z)

- CP+/_) ___ (III.A-56)

#n

The _ (_)are reduced to the integralsj _C/7) which are

then calculated using the methods of Section III.A-la.

Case 2: _, -- /

The substitution of Eqo (III:A-42) into Eq. (III.A-49) gives

_£I) (III.A-57)

where

J- -, (,-)_)
_/_

(III.A-58)
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_ _ 7
The IA "_" are reduced to the _! /_ _ which were considered

in Section ll!oA-la_ by the use of the two recursion formulas:

(a). 6,,,;, cn+-,)

(III.A-59)

and

O
o

(_+,J_,,_, (n) = c2,_.,2 _.aCo+,)

o

(III.A-60)

Case 3: _----Z

The (_j_ for this value of are written in the form:

(z_1+,) (a-_l! (III.A-61)

The most straightforward waT of evaluating these integrals is

to reduce them to the integrals _(_) , Eq. (III.A-26), by

applying the ....... ton fcrmulas_ Eq. (i!IoA-59) and (III.A-60)

28

An alternate approach based on the following composition
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for spherical harmonics -could also be used:

I

(III.A-62)

£, 2_ is )Here _, _% *k_ is the Wigner 3j symbol. As an
o

example_ we consider the integrals _ _O] Expanding thej,t "

zeroth order wave function gives °

O

jr,..

- z _ c_ <_ )" (III.A-63)

The 3j symbol for the ease

28

following value •

ml = m2 = m 3 0
has the

{ o
c-,)e{_:_S

,_'_-'H_ odd

,p,#

(III.A-64)

zp_.j_
even
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with

(III.A765)

b. Calculation of -J'_t_ C_)

of the _ntegra±s which have been considered thus farj

the remaining integrals

_,_¢f_)=c-, (,_-i,,,,7.1 d_,<_.l,,g,e1_
(. ,_i- I_1)!

<:,j t,+ I ',t_.+l
C];II,A-66)

are the most difficult to evaluate° The complex nature of

the Jaffe form of the zeroth c.,_der eigenfunctions in the

_ _- _y_=_ eveluationo Thusj it isintegrands pre_ an ana .......

necessary to rely solely on numerical inte_ation procedures.
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Unfortu_ately_ tne integrands contain associated Legendre

polynomials of the second kind° Considerable loss in accuracy

generally results from the use of recu_sion relations involving

these functions_ It is important then_ to somehow get rid of the

Q's before attempting numerical integ_ationo

Ruedenberg_ in the evaluation of two center exchange

integrals_ has devised an ingenious method of accomplishing

this° The fact that this method can be extended to include

the evaluation of the ____#_ is indeed fortunate.

As a preliminary step in the determination of the _

the recursion relation

,_ _, _-7_,_ {p_ l - _,.__ CF,z,_ -_'_

_iI_--_.. __2.

_,° _ _,,_
is used to reduce them to "_Af_ -= _A Next_ the

29
recur sion relation

(Iii. A-67)

C.e- ,.,.,) q_ _-' ( p (III.A-68)
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is used to further reduce the -_ to the form

O

where

let us define

,,1
(III.A-69)

_(lJ _ e (_-,)

(III.A-70)

Using this definition_ gq. (I!!oA-69) is written in the form
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(III.A-71)

Following Ruedenberg_ the second term oe. the right hand side of

Eqo (IIi.A-71) .is integrated by parts giving

Oo

(_.A-72)

The first te_m on the right o_ the equal _£gr_ vanishes_ since

the range of one o_* the: other of the integrals fis zero at the

limit point_o Equation (Z_!,A-7i) m.ay therefore be written

in the fo_m

(III.A-73)
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This is then expressed as

(III.A-74)

If we now perform a partial integration we find:

(III.A-75)

Consider the first term on the right hand side of Eq. (III.A-75).

At the lower limit_ _/_ approaches a constant value while

the range of the two integrals approaches zero. At the upper
F

_ I

limit_ assuming the functions CA'_, _ are well behaved_ which

is the present ease, the integrals remain finite while _/_

approaches zero° Thus the term vanishes° Continuing the Ruedenberg

derivation, we introduce the Wronskian

I

r__<>  j-J - (III.A-76)

resulting in the expression
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P
(III.A-77)

where

P } p

(III.A-78)

The integrals_Eq° (!lloA-77),are now in a form convenient for

numerical quadrature.

The important aspect of the preceding development is the

fact that the Ruedenberg method does not require a particular

functional form for the integrandso This implies that the

rapid evaluation of diatomic electron repulsion integrals of

form <_0_)_n,d_%_,)_)>depends_. far more on thethe

separability of _ than upon their complexity. This

result is important for the adaptation of perturbation

techniques to molecular problems since perturbation wave

30,31
functions are often quite complex°
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B. Numerical Details

I. General Integration Procedure

Throughout the last section_ continual emphasis was placed

on the fact that_ if integrals were evaluated using numerical

quadrature methods exclusively, generalized programs could be

developed which would be readily adaptable to other molecular

perturbation calculations° This is an important result in that

the development of molecular integral programs is a difficult,

expensive and time consuming task.

Perturbation functions tend to be quite complex. If integrals

containing these functions are evaluated analytically_ each

calculation requires individual treatment. It would thus seem

reasonable to evaluate all such integrals numerically using a

program sufficiently generalized that very few changes would

have to be made for each individual calculation.

In order to demonstrate how such a program could be

written and to emphasize the simplification in organization

resulting from a completely numerical approach_ the results

of the last section are rederived from a slightly different

point of view with the function _o replaced by an arbitrary

function (_0

Consider the primitive integrals



(1)._.o s- 1)

whereqO,, C_, Ce,an_C¢__'e _'_tra_'y f_n_t_onsof the

coordinates _, , _., /_,., .and q_ respective]yo As before,

the preliminary step i,_ the evaluation of these integrals is the

reduct.ion to _A_°_p_/-7_o ) and /_D(f_/_-l) using

the relationship Eq. (IIi,A_,5),

The integrals M.L_(F_fT_O) are immediately separable

into products of one electron integrals° Integrating out the

dependence, we find that for even values of the parameters IA

r, and s :

f_ (III.B-2)

where

(IZ_.B-3)
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with the basic integrals G 7 and _ defined by

(III. B-4)

and

G_c,-,,_,j _-J_,'c,-?_)°/"_ (III. B-5)

For all other combirmtions of _ _ r, and s_ the integrals

are equal to zero. The integrations of G _(/_3_j and

G- _ Cl-fJ4_) are now accomplished by applying the numerical

quadrature procedures which are detailed in the next section.

The remaining integrals /_ Cp_i-l) are evaluated

by introducing the Neumann expansion for l/rl2 and integrating

out the q dependence leading to

wher e

(III.B-7)



i

78

with _-(_i_4) given by Eqo (III.A--4JJ: _-hile the two basic integrals

_a_ and _,_ are defi._ed b_]

(III. B-8)

and

;'V;I;,'I / f,f, 
(A + I_I)!

(IIIoB-9)

Using the relationship

(_' _ _ _ _-_ .,.. _ _-_..,.,_co_j_ - %,;, c_,_-)_%.;__,_+_,_).(III.B-10)

the ""_.f, Pl
are reduc.ed to the :'.nCegrals

(III°B-II)

which are evaluated nume_kcally,

The preliminary step ir_ the evaiu:_rion of the--_._'°(f_)

is their reduction to 2_)(p_u:_ing the t:wo relationships
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(II%.B-12)

and

lli--I

-(<-- ".J_7F_+,,a on<a-_j J

The _i_

to the form

(III.B-!3)

are transformed using the method of Ruedenberg

(III.B-14)

where

4g --.4_X .£ p

Equation (IIIoB-15) is then integrated numerically.



As an application of these results_ consider the recent

perturbation calculation on the hydrogen molecular ion by Lyon,
BO

Matcha, Sanders, Meath, and Hirschfelder_ in which the energy

is determined through third order° The details of this calculation

and a definition of symbols are given in Appendix Io

In order to define a perturbation problem_ the H2+Hamiltonian

is written in the form

H -- --_--?" I I -- 6-_0_-V (III.B-16)
Z 17_ rT_ --

where

/-/o= _v _-_ f _-q)f __ /

with the perturbation determined irom the equation

(III.B-17)

\"-- _-- HO
(III.B-18)

The exact solution to the zeroth order equation is given by

-_

(III.B-19)
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The analytical expressien for the first order wave function is

found t,'.?be :

(III.B-20)

where

+.._ -R'6 _-

I-

-P-_61

3

L °4-t=@

_*_, (@_)-_.(_)
!

J
(III.B-21)
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and

Z_-_) _+a) + _G'_ *_=l_
(III,B-22)

In order to normalize the total wavefunction_ the integral

_o j_> must be evaluated, An analytical evaluation required

a month to complete. Let us consider its evaluation in terms of

the M_ _ Writing

(III.B-23)

we find it is necessary to evaluate the integrals <_o_o>]

_o I _ I _o>_ and

The first is given by

(III. B- 24)

with
1

Similarly the second integral is given by
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The remaining integral has exactly the same form:

(ooZoo)

7..

(III.B-26)

2. Mechanical Quadrature

In this section_ we consider numerical schemes for evaluating
32

integrals with both finite and infinite limits. A numerical

quadrature procedure is one which approximates an integral_

with limits (a_b) over a function _ (x) in the following manner:

b

Herej the _ are discrete points on the interval (a_b) and

W_ are corresponding weights. Since the _[ and _/_ form a

set of 2N constants_ the sum is capable of uniquely specifying

a polynomial of degree 2N-I.

The distingoishing characteristic of various quadrature

formulae is the manner in which the constants are chosen. Of

interest to us are the two families of quadrature formulae

discussed below.
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a. Gauss 0uadrature

Gauss quadrature formulas are characterized by the fact

that no restrictions are placed on the 2N constants. Thus

these formulae are capable of specifying uniquely a polynomial oi

order 2N-I° Two important members of this group are the

Legendre-Gauss and Laguerre Gauss formulae.

The Legendre-Gauss quadrature formula for approximately

(-I_ I) is givenevaluating a definite integral with limits

by

(III.B-28)

where

t_" __-- 7-- (I!!. B-29)

and the abscissae _ are the roots of the Legendre polynomials

The Laguerre-Gauss formula for approximating the integral

__K

with limit (0_ _ ) and containing a weighting factor e

is given by

jo,== _K ix/

r.=q
(III.B-30)
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where

/4,:- (n._)_
I

(III.B-31)

The abscissae _ are roots of the Laguerre polynomials of

degree N . The associated Laguerre polynomials are defined by

the equation

" a L
LI,_ _-" 1,1 (III.B-32)

where

(III.B-33)

are the Laguerre polynomials.

b. Newton-Cotes quadrature

The Newton-Cotes formulae are characterized by equally

spaced abscissae _ on the interval (-I,I). This restriction

of equal spacing removes N arbitrary constants. Thus_this

method is capable of specifying uniquely polynomials of degree

N-!. Specific members are SimpsonOs "three-eighths" rule and

Weddle's rule.
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In Simpson_s'_Pree-eighths _'ru!e_ the integral of

approximated in the following manner:

I

f

f(x) is

(III. B-34)

Weddle's Rule states that

(iII.B-35)

In general_ Gauss quadrature formulae should be used in

preference to Newton-Cotes formulae whenever possible. Specific

applications of the above formulae are discussed in the next

section.

3. Details of Computation

In this section we consider in detail the evaluation of

the integrals found in Sections A and B of this chapter. In

order to perform numerical integrations efficiently_ care_

must be taken to apply the proper quadrature formula.

Generally_ a Gauss quadrature formulation will give the best

results.
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The evaluation of the one-dimensional integrals over the coor-

dinate : such as Eq. (III.B-4), was accomplished by first

transforming the integral to the range (oi_) and then applying

a Laguerre Gauss quadrature formula. The final working equation

is of the form

(III. B- 36)

where _g" and _" are the Laguerre weights and point respectively

and is an arbitxmry function. Integrals involving

the _ coordinate, such as Eq. (IIIoB-5)j are evaluated

by applying a Legendre Gauss quadrature formula resulting

in the equation

I

¢.,

where _[ and _

respectively and

To evaluate the

are the Legendre Gauss weights and points

is an arbitrary function.

_, Eq. (I!I.A-77), the inner integral

was transformed in the manner
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and then evaluated with a Laguerre Gauss quadrature formula

leading to the equaticn

_ _=l _ _ (III. B-38)

where _ and _ are Laguerre Gauss points and weights

respective ly_ and

(III.B-39)

The outer integral was transformed to the range CO_I)by letting

/ i
-- ----- (III. B-40)

_ g

and then evaluated by applying a Legendre Gauss formula.

Thus

' _L,:_( _ )--g_,_ - Z d dlt+,
(III.B-41)

where _ and L( are Legendre Gauss points and weights

respectively and

p
(III.B-42)
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An alternate procedure for evaluating the _=_I/_" is to use
22

Simpson's rule over both variables° The principle benefit

of this method is that it all_s for an efficient evaluation

23

of the inner integration.

89
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IVo RESULTSANDDISCUSSION

in this chapter we consider the results of the perturbation

calculation of the H2 molecule° All computations were

performed on the CDC1604 and 3600 computors. The rate of

convergence of the perturbation expansion has been found to be

extremely rapid at the equilibrium separation_ R = 1.4. The

energy tbmcugh fifth order is in good agreementwith the accurate
29

variational calculations of Kolos and Roothaan_ and of Kolos
34

and Wa_nlewlcz

The accuracy of the calculation improves as R decreases;

for large R_ the perturbation series is ill behaved. This is

due primarily to the fact that the degeneracy of the Y-_ ÷ and J-_
g

states is net treated adequately° The zeroth order wave function

dissociates incorrectly.

Ao H2+ Energy and Wave Function

15

Bmtes_ ledsham and Stewart have tabulated accurate

functions and energies for the ground state of H2+ Jwave

unfortunately a higher degree of accuracy is required in the

+

present calculation° Thus the solution to the H 2 equation

was determined to eight significant figures.

In Tables !_ !! _nd III the electronic energy and wave

Junction corresponding to the Is KT" state of H2+ are given
g
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TABLEI

Accurate Values for the Energy of H2+excluding
in units of e2/2a

O

0.4 0.37955279 0.05387184 -0.09573136

O. 6 O. 54851367 O. 09386517 -0. 19922442

0.8 0.70528975 O. 13428559 -0. 32789966

1.0 0,85199364 O. 17371769 -0.47594692

1.2 0. 99038460 O. 21165050 -0. 63922559

1.4 1. 12186623 O. 24792061 -0. 81469 304

i. 6 io 24755747 0. 28250605 -i. 00004194

I.8 io 36836066 0. 31544267 -i. 19347131

2.0 i. 48501462 0, 34678809 -i, 39353885

2.2 I. 59813388 0. 37660557 -i. 59906308

2°4 i. 70823724 0.40495708 -1.80905704

2.6 1.81576876 0.43190039 -2.02268225

2.8 I. 92111309 0.45748837 -2. 23921643

3.0 2.02460685 0.48176917 -2. 45803045

3.8 2.42553823 0.56666259 -3. 345968_ I

Nuc lear R_pulsion

E

-3.60150807

-3.34296942

-3.10896019

-2.90357262

-2.72461571

-2.56853848

-2.43187444

-2.31161838

-2.20526842

-2.11077016

-2.02644061

-1.95089716

-1.88299772

-1.82179239

-1.62970518
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TABLEII

Coefficients Corresponding to the
WaveFunction for Selected Values

+
Portion of the H2

of the Internuclear Distance

R gl g2 g3 g4

0.4 1.00000 0.00097 0.00010 0.00002

0.6 1.00000 0.00239 0.00019 0.00003

0.8 1.00000 0.00419 0.00027 0.00004

1.0 1.00000 0.00622 0.00033 0.00005

1.2 1.00000 0.00834 0.00037 0.00005

1.4 1.00000 0.01050 0.00040 0.00004

1.6 1.00000 0.01265 0.00041 0.00004

1.8 1.00000 0.01475 0.00041 0.00004

2.0 1.00000 0.01678 0.00040 0.00004

2.2 1.00000 0.01873 0.00039 0.00003

2.4 1.00000 0.02057 0.00038 0.00003

2.6 1.00000 0.02232 0.00036 0.00002

2.8 1.00000 0.02395 0.00033 0.00002

3.0 1.00000 0.02547 0.00031 0.00002

3.8 1.00000 0.03038 0.00023 0.00001
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Coefficients

function for

R :_0

0.4 - 1.00000

0.6 1.00000

0.8 1.00000

1.0 1.00000

1.2 1.00000

1.4 1.00000

1.6 1.00000

1,8 1.00000

2.0 1.00000

2.2 1.00000

2.4 1.00000

2.6 1.00000

2.8 1.00000

3.0 1.00000

3.8 io00000

TABLE Iii

+ Wave-
Corresponding to the 9 Portion of the H 2

Selected Values of the Internuclear Separation

O. 01608

0. 03375 O. 00017

0. 05613 O. 00048

0. 08247 O. 00103

0. 11226 0. 00190

0. 14518 0.00316 0. 00002

0. 18098 0.00489 0. 00005

0. 21951 0°00714 0. 00010

0. 26065 0°01001 0. 00015

0. 30430 0.01356 0. 00025

0. 35038 0.01787 0. 00037

0, 39883 0°02302 0. 00055

0. 44958 0°02908 O. 00078 0. 00002

0. 50254 0.03615 0. 00108 0° 00002

0. 73453 0o 07956 0. 00326 0. 00008

OclO
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for various values of the internuclear separation.

B. Convergence of Energy Expansion

The rate of convergence at the equilibrium separation

was highly satisfactory° In Table IV, the CjS resulting from

a 45 term H set are tabulated. The dissociation energy in

electron volts is referred to as D(eV). The symbol EK.W.

refers to the 80 term variational calculation of Kolos and

Woolnerwic 34 while EK.Ro refe_to the 50 term calculation of

Ko!os and Roothaan 29. These values do not include the inter-

nuclear repulsion energy.

The symbol Esum(n) is defined as

Esu C )- A l)

The expectation value of /71_ has been determined using a

I0
formula derived by Scherr and Knight:

L (IV.A-2)

Unless otherwise spe¢_f!ed all energies are in atomic units.

A comparison with EK.W. and EK.R. shows that the energy

through fifth order has converged to five figures. The

i \i_
expectation value of q_,L/ through fourth order agrees exactly
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Electronic Energy of

a 45-Term H

TABLE IV

Hi'Through Fifth Order Computed Using

setL at R=I.4 with_ =1.2

n E -E
n sum(n)

0 -2.568538 2.568538

I .780882 1.787656

2 -.110877 1.898533

3 .010729 1.887804

4 -.000714 1.888518

5 -.000217 1.888735

D(eV) I

.78088

.55913

5.0133 .59131

4.7214 .58846

4.7408 .58737

4.7467

EK.W.

-1.888760

EK.R.

-1.888733
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with the value given by Kolos and Roothaan.

From a comparison with Scherr and Knight_ all high order

energy coefficients should be negative. This is born out by

the fact that as the basis set increases_an increasing number

of terms becomenegative. Thus_ the energy series was terminated

whenever an_ beyond_ 3 becamepositive.

In Table V the effect of variation of the non-linear

parameter g in the H set is demonstrated. A 17 term

expansion is used. Note that the second order energy demonstrates

a minimumaround _ Io_.

The energies through third order resulting from a 45 term

F and H set are comparedin Table VI. The roughly optimized

value _=g2 is used in the H set. The convergence of the

two is approximately the same. However_no non,linear variation

of the exponential parameter is required with the F set.

In order to determine the contribution to the second

order energy from separate terms in the first order wave

function_ we have calculated the energy through third order

for a 1-36 term F expansion at R = 1.4. The results are given

in Table VII. The dissociation energy increases to a maximum

and then decreases. At the point where _^_L_=maxlmum"is reached.

4 goes from positive to negative.
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TABLEV

Variation of Energy of H2 Through Third Order at
R=I.4 Using a 17 TermH-basis Set

-_z e 3 -E¢,)

I. 25 .110532 .011013 I.887176

I. 20 .110594 .010694 I.887556

i.15 .110569 .010431 I.887795

I. i0 .110508 .010274 i.887890
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TABLE VI

Comparison of H Method at F Method at R = 1.4 using a

45 term Basis Set with_ =1.2

H Set

n _ Esum(n) D(eV)
n

2 -.110877 -1.89853/4- 5.0133

3 .010729 -1.887804 4.7214

F Set

n C Esum(n) D(eV)
n

2 -.110852 -1.898509 5.0126

3 .010730 -1.887778 4.7207
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Electron Energy of

with a i- to 36-term

No.of terms __

i 00001

2 i0110

3 01220

4 00020

5 00111

6 01001

7 02000

8 11020

9 01020

I0 00110

ii 10021

12 ii000

13 00002

14 20020

15 10020

16 00220

17 11220

18 02110

19 02001

20 01021

21 20220

22 20200

23 Iiii0

24 01002

TABLE VII

H 2 through third order

F basis set.

- Ez _3
°102592

.102594

.102698

.102726

103167

103337

109241

109244

109277

109381

°109449

109634

110303

110350

110352

110381

110387

110388

°110404

°110404

.110405

°110405

.110521

.110779

.005593

.005583

005884

005803

007209

005692

009281

009214

009293

.009413

°009647

.009001

.009726

.009728

.009740

°009812

.009817

.009831

.009877

°009879

.009879

°009878

.010022

_0!0627

at R=I.4

-Esum(n)

1.884655

1.884667

1.884470

1.884579

1.883614

1.885301

1.887616

1.887685

1.887639

1.887624

1.887458

1 888289

1 888233

1 888278

1 888268

1 888224

1 888225

1.888213

1.888183

1o888181

i.888182

1.888182

1.888155

1.887808

computed

D(eV)

4.6357

4.6360

4.6307

4.6336

4.6074

4.6533

4.7163

4.7182

4.7169

4.7165

4.7119

4.7346

4.7331

4.7343

4. 7340

4.7328

4.7329

4.7325

4.7317

4.7316

4.7317

4.7317

4.7309

4.7215
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TABLE Vil (continued)

Electron Energy of H2 through third order at R=I.4 computed

with a I- to 36-termF basis set.

No. of terms IEs._"_Igz./Trz. ._,

25 21020

26 21200

27 11021

28 00112

29 12000

30 12110

31 ii001

32 21220

33 IIIII

34 10022

35 00022

•110785

.110789

•110803

•110873

110873

110889

110893

110893

110897

110912

110916

_3 -Lsum(n) D(eV)

o010633 1.887809 4.7215

°010638 1.887807 4.7215

.010629 1.887830 4.7221

.010750 1.887779 4.7207

°010760 1.887769 4.7204

.010787 1.887758 4.7201

.010805 1.887744 4.7197

.010805 1.887743 4.7197

.010826 1.887726 4.7193

.010861 1.887707 4.7188

.010881 1.887691 4.7183
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C° R dependence of Energy Coefficients

in Figure I we illustrate the variation of the energy

through third order as a function of R = In the limit of small R,

we have the He case where _ = -4_ _ = !. 25, _ = - 157666
o i 2 "

and C = .004349. The limiting values of the coefficient for
3

large R are _o = -I and _n_0 = 0 . The calculation of these

latter values requires the use of doub]e perturbation theory due

to the degeneracy between the and ._ states.

The energy coefficients for various values of R determined

with a 50 term F basis set are given in Table VIII. The energy

expansion is ill-behaved for large R . At R = 2.6 only terms

through C 3 are retained°

In Table IX we tabulate the 50 term basis set and the

corresponding first order coefficients at R = 0.4 in order to

demonstrate the relative importance of various terms in the

expansion set. The largest contribution comes from the [7/_term.

Do Members of Isoelectronic Sequence

Our final result is the listing in Table X of the

electronic energy of He_ 2 at R = 0,4 and 0.2_ and_ the

T...+t4 °
electronic energy of ++2 at R = 0+2+ As _s apparentj the

larger the _ value, the more rapid is the convergence of the

perturbation series.
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TABLE VIII

Electronic Energy of H 2

50 Term Expansion

for Various Values of R

R = 0.4

N _ -Esum D (eV)
n

0 -3. 601508 3.601508

i I. 118014 2.48 3494

2 - .141151 2. 624645 23.81817

3 .004830 2. 619815 23. 94960

4 - .000220 2. 620035 23. 94361

5 - .000153 2. 620188 23. 93945

6 - .000018 2. 620206 23. 93896

7 - .000007 2.620214 23.93875

8 - .000003 2. 620216 23. 93869

EK.R.

Using a

EK.W.

- 2. 620203

103

R=0.6

N

0

I

2

3

4

5

6

7

8

C
n

-3.342969

1.033259

- 131721

005615

- 000303

- 000151

- 000011

- 000007

- .000002

-Esum D(eV)

3.342969

2.309710

2.441432 6.1286

2.435817 6.2814

2.436120 6.2731

2.436270 6.2690

2.436282 6.2687

2.436289 6.2685

2.436291 6.2685

EK.R. EK.W.

-2.436292
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R 0°8

n

0

i

2

3

4

5

6

7

8

n

-3.108960

956921

- 124078

006644

000409

- 000153

000003

- 000007

- 000002

TABLE VIII

-Esum

3.108960

2.152039

2.276117

2.269473

2°269882

2.270035

2.270038

2.270045

2.270047

(continued)

D(eV)

.71064

.52985

.54098

.54515

.54524

.54542

.54548

EK.R.

-2. 270175

104

_K.W.

-2. 270049

R= 1.0

n

0

i

2

3

4

5

E
n

-2. 903573

890061

- .118192

.007871

- o000536

- .000159

-Esum

2. 903573

2. 013511

2.131704

2.123832

2.124368

2.124527

D(ev)

3.5836

3. 3694

3. 3840

3. 3883

EK. R.

-2. 124517

EK.W.

-2. 1245331



R

n

0

I

2

3

4

5

1.2

n

-2. 724616

.831796

-. 113875

.009280

-. 000676

-. 000178

TABLE Vlll

-Esum

2. 724616

1.892819

2. 006694

I. 997414

1.998090

1.998267

(continued )

D(eV)

+4.7171

+4. 4646

+4.4:830

+4.4878

EK.R.

-1.998264

105

EK.W.

-I. 998264

R =1.3

n

0

i

2

3

4

5

n

-2.643943

0.805497

-0.112251

0.010058

-0.000754

-0.000190

-Esum

2.643943

1.838446

1.950696

1.940639

1.941393

1.941583

D (eV)

4.93761

4.6639

4.6844

4.6896_

EK.R.

-I. 941553

EK.W.

-i. 941572



R

n

0

i

2

3

4

5

6

1.4

_n

-2.568538

0.780883

-0.110968

0.010937

-0.000926

-0.000108

-0.000066

TABLE Vlll

-Esum

2.5685 38

I. 787656

1.898623

1.887687

1.888613

1.888720

I. 888786

(continued)

D (eV)

5.0157

4. 7181

4. 7433

4. 7463

4. 7481

EK.R.

- 1.888728

106

R = 1.5

n

0

I

2

3

4

5

E
n

-2.497980

0.757812

-0.109963

0.011799

-0.001023

-0.000142

-Esum

2.497980

1.740167

1.850131

1.838331

1.839355

1.839498

D(eV)

4.9920

4.6709

4.6988

4.7026

EK.R.

-1.839491

EK.W.

-1.839515



R 1.6

n

0

I

2

3

4

5

n

-2.431874

0. 736157

-0. 109287

0. 012658

-0. 000992

-0. 00266

TABLE VIII

-Esum

2.431874

1.695717

I.805004

1.792347

i.793340

I. 793605

(continued )

D(eV)

4.8978

4.5534

4.5804

4.5876

EK.R.

-I. 793503

EK.W.

-i. 793577
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R __ 1.8

Vlll (continued)

n _ -Esum D (eV)
n

0 -2. 311618 2. 311618

i 0.696640 1.614979

2 -0.108934 1.723913 4.5809!

3 0.014792 1.709121 4.1784

4 -0.001036 1.710157 4.2066

5 -0.000586 1.710743 4.2226_

EK.R.

-I. 710540

EK.W.

-i. 710617

108

R = 2.0

n _ -Esum D (eV)
n

0 -2. 205268 2. 205208

I 0.661530 1.543739

2 -0. 109846 i.653585 4. 1789!

3 -0. 017218 i.636367 3. 7105

4 -0. 001506 I.637873 3. 7514 _



R

n

0

1

2

3

2.6

n

-I. 950897

0.576813

-0.121121

0. 027825

VIII

-Esum

I. 950897

I. 374084

1.495206

1.467380

(continued)

D (eV)

3. 00911

2. 2520

EK.R.

-1.469903

EK.W.

-1,470378

109

R = 3.8

n

0

I

2

3

n

-1.629705

0.469475

-0.213288

0.113776

-Esum

1.629705

1.160230

1.373517

1.259741

D (eV)

-3. 0028

0. 0929

EK.R.

-i. 281663

EK.W.
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TABLEIX

Coefficients of First Order_ fifty term wave function at

I ,.._. I/ 17,.

00001

00020

01000

02000

00110

00002

II000

01001

00021

00111

I0110

11020

00220

11220

01220

02001

01021

10020

01002

02110

20200

00112

10021

21220

IIII0

21200

21020

.040971

.009078

.007868

.006484

- 006393

- 003708

- 003420

002985

- 002664

001551

- 001317

- 001289

- 001268

001192

- 001044

- 000815

000795

000711

.000622

.000581

-.000430

-.000395

.000313

-.000285

-°000221

.000189

°000179

R=0.4

r c')

01022 .000010

12000 -.000010

10022 .000009

03001 .000004

22110 -.000003

11022 .000002

23000 .000000

03201 .000000



o
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TABLE IX (continued)

Coefficients of First Order, fifty term wave function at R=0.4

11021 -.000159

IIiii .000098

00022 -.000093

20220 .000080

12110 -.000074

II001 -.000071

01020 -.000052

12001 .000048

03000 .000044

11002 -.000032

20020 -.000023

22220 .000018

03200 -.000016

22000 -.000016

22200 -.000013

III



2

TABLE X

+4 in a.u. for
Electronic Energy of He_ 2 and L12

values of Rusing 50 term H basis Set

R

R

= 0.2

n _n

0 -14. 406032

1 2. 236027

2 - .141151

3 - .002415

4 - .000055

5 - .000019

6 - .000001

0.4 _n

n

0 -12.435841

I 1.913842

2 - .124078

3 - .003322

4 - .000102

5 - .000019

50 term basis set

R 0.2 _

0 -27.980640

I 2.870763

2 - .124078

3 .002214

4 - .000045

5 - .000006

selected

-Esum(n)

+14.406032

+12.170005

+12.311156

+12.313571

+12.313626

+12.313645

+12.313646

-Esum(n)

+12.435841

+10.522000

+10.646077

+10.649399

10.649501

10.649520

-Esum(n_J

+27.980640

25.109877

25.233955

25.231741

25.231286

25.231292

112
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Rayleig_ Schroedi_ger Ferturbation Theory as a tool for

_alc_iatingmole_l_ energies_ cre_ting the electronic interaction

as a perturbation to _he remai_IngHamiitonian_ is capable of

giving highly a_c_rate results. However slnee these results may

also be obtained with the aid of variational methods, the real

value of perturbation theory lies in the dete_minatlon of pro-

perties other than energy for which no variational bound exists.
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APPENDIX I

Perturbation Treatment of the Ground State of H2+
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Perturbation Treatment of the Ground State of H_+

_VILLIAhI D. L_'o_', ROBERT L. MATCHA, _VILLIAM A. SA_ZmS, WXLLXA_J. _IEATH, ANDJOSEPH 0. HXRSCHrEU_Vm

UMo_ersi_y of Wisconsin Theore_icd Chemistry Inslih_le, Madison, Wisconsin

(Received 7 April 1965)

Rayleigh-Schr6dinger perturbation calculations are carried out for the ground state of the Iiz + molecular
ion. The zeroth-order wavefunction for this problem is chosen to be the Guillemin and Zener variational
function

_ = N[exp (--arA--flrB) + exp (--flrA--arB) ].

The energies through third order and the expectation value E(1) of the Itamiltonian calculated with the

wavefunction accurate through first order are computed for various choices of the parameters. For the
optimum choices of both, and t, we obtain for all separations values of E(1) which agree almost perfectly
with the accurate series calculations of Bates, Ledsham, and Stewart. Also the values of the wavefunction
accurate through the firs( order agree almost perfectly at most points in configuration space with Bates **a/.

115

I. INTRODUCTION

HERE are a number of difficult problems involved

in the application of perturbation theory to the

calculation of molecular energies. The ground state

of the diatomic hydrogen molecular ion H2 + is the

simplest example since it involves only one electron

and two similar nuclei. Starting with the simple Guil-

lemin and Zener 1 wavefunction as zeroth order, the

first-order wavefunction is obtained in terms of new

transcendental functions. The resulting zeroth-order

plus first-order function agrees "almost perfectly at

most points in configuration space with the very

precise series solution wavefuncfion obtained by Bates,

Ledsham, and Stewart3 For all separations, the ex-

pectation value of the energy corresponding to our

zeroth plus first-order wavefunction agrees almost

perfectly with the energy obtained by Bates, Ledsham,

and Stewart. These results suggest that even first-

order corrections to simple trial molecular wavefunc-

tions may provide the energy and other physical proper-

ties of molecules with suflScient accuracy for practical

purposes. However, even in our I-I2 + example, the

energy integrals involved new types of transcendental

functions and (except for some special choices of wave-

function parameters) had to be calculated numerically.

For many-electron molecules the calculation of the

perturbed wavefuncfions and the energy integrals re-

quires the use of variation-perturbation techniques.

II. GROUND STATE OF THE H2 +

ISOELECTRONIC SEQUENCE

Let us consider a molecular ion (isoelectronic with

H= +) consisting of two nuclei, A and B, and one electron.

The nuclei each have a charge Z and are separated by
a distance R. The distance from the electron to the

This research was supported by the following grant : National
Aeronautics and Space Administration Grant NsG-275-62.

1V. Guillemin and C. Zener, Proc. Natl. Acad. Sci. U. S. 15,
314 (1929).

"-D. R. Bates, K. Ledsham, and A. L. $_¢w_t, Phil. Trans.
Roy. Soc. London Ser. A246, 215 (1953),

two nuclei is rA and YB, respectively. It is convenient

to describe the system in terms of confocal elliptic

coordinates with

x= (,,+r,)/R. _,= (r_-r,)/R. (1)

Throughout this paper we express energy in units of

_/a_ and length in units of no.

Kim, Chang, and Hirschfelder _ have found that the

simple Guillemin and Zener wavefunction I leads to

surprisingly accurate values for the energy of the ground

state of H2 +. It is therefore logical to use it as the

zeroth-order function in a Rayleigh-Schr6dinger per-

turbation treatment. *'s The Guillemin and Zener

function may be written

#=N exp(--RaX/2) cosh(Rbt_/2). (2)

Here a and b are adjustable parameters and N is the

normalization constant. It is easy to show that the

Guillemin and Zener function satisfies the Schr6dinger

equation

Hd,= 4,, (3)
where

_= --a*/2 (4)

and

2a k a 2-- 1-- _

2bu / Rb_'_

R(X'--# 2) tanhk-_). (5)

The true Hamiltonian for the diatomic molecular

ion, neglecting internuclear repulsion, is

_= _ W__ E4zA/R(x-._ _:)3. ,,

The zeroth-order expectation value of H is the energy

a S. Kim, T. Y. Chang, and J. O. ttirschfelder, J. Chem. Phys.
43, 1092 (1965).

*A. Dalgarno in Quanlum Theory, edited by D. R. Bates
(Academic Press Inc., New York, 1961), Vol. I, Chap. 5.

s j. O. Hirschfelder, W. Byers Brown, and S. T. Epstein, Advan.
Quantum Chem. 1, 255-374 (1964).



", I16 -

LYON, MATCHA, SA_:DERS, MEATH, AND HIRSCHFELDER

calculated in Ref. 3,

2(0) = (¢, B_). (7)

The perturbation potential is

V=B-Ho, (8)

and the first-order perturbation energy is

,(1)= (_k, VJ/)=E(O)--,. (9)

The first-order wavefunction _ka) satisfies the dif-
ferential equation

(_0-_)_(1)+ (v-,(_))_= 0 (lO)

and is orthogonal to the zeroth-order function

(_, _(1))=0. (11)

The second- and third-order energies can be expressed
in terms of _(1),

and

_c3)=(_(_),(V-_C_))_(1)). (13)

The expectation value of H calculated with the wave-
function accurate through the first order is then

= E(0)-F (_a)-t-d3))/_l-F (_k(I), _(_))]. " (14)

By the Rayleigh-Ritz variational principle, 2(1) pro-
vides an upper bound to the true energy of the ground
state of the diatornic molecular ion.

Equation (10) may be separated in confocal elliptic

coordinates by making the substitution

where 7' is given by Eq. (2). The resulting one-dimen-
sional differential equations are

( d/dX ) [(X 2-1) exp(-- RaX ) ( dF_/dX ) "]

= exp(--RaX) {C(a, b; R) +['R2(a2--b')/4 -]

--R(2Z--a)X-- (R2e(1)k2/2)} (16)

and

_[(1--_ _) cosh_(_) dF2-1-h-_J= cosh2IRbu\(.-_.-)

X {-- C(a, b; R)-F (R*da)u'/2) -- I-R2 (a'-- b2)_'/4]

q-Rbl_ tanhC Rbi_/2) 1, (17)

where C is the separation constant.
•The function Fx is obtained by integrating Eq. (161

twice, and the separation constant is determined by
requiring that ['(_k2--1) exp(--RaX)(dF_/d'h)] vanish
at X=I and infinity. 6 The integration of Eq. (17)
involves the evaluation of two new transcendental

functions

To(_)=f_i tal__---_(_x)dx (18)

and

S_(t0 = f" x sech2(ax) dx. (19)-a 1--x _

To evaluate T_(U), the hyperbolic tangent is ex-

panded in the series _
ao

tanh(au) =8a#Y]_ ( 2nT1)_+4a_] -'_. (20)

Then the operations of integration and summation are

interchanged, the resulting integrand is expanded in
partial fractions, and the integration is carried out
term by term to yield

T,(U) =--½ tanh(a) In(l--# _)

[ (2.+1)_] (21)-k4a__,_(2n-F1)z_a-k4a_ -_ In /_-_ 4@ J"

Once T_(#) has been evaluated, S_(u) may be de-
termined readily by means of the identity

S_(t_) = (O/Oa) To(I_). (227

The solutions of the differential equations (161 and

(17) are then

FI ( h) = { ( e(X)/a_) -b [-( 2Z--a) /a-] } In(X+ 1) -t- ( Re(_)k/2a) -[- Fa° (23)

[a_'bz--Ze_a)l, [ ,/Rbu'_']. [R(a_--l_)--2Re (_)] , [Rbta'_ , _ ln{1-E(1-u_)/_bV(qJ+/_b_)']}= ,ncosnk--i-) 7'  an"kq-F-
X ({- (2d_)/a 2) -- (4/a) -- (2Rd_)/a) --4R+2Ra-F (2e(X)/b') --E(a'--b')/b'J}-bE(a_--l_l_)/(a_-bl_ba)]

X {-- (2e(_)/a _) -- (4/a) -k 2Ra--4R-- (2Rea)/a) -- (2R_e(')/3) -b (2e(_)/b _) -- [(a_--b_)/b_Jq - [R_(a_--b_)/3]} )

+ {- (2_(_)/a_)- (4/a)+2ga--4R- (2g_'a,'/a) - (2/_(1)/3) + (2_(_)/b_) --[(a"-b_)/b_J+[l_(a_--b_)/_J}

X _ tanh(Rbu/2)--tanh(Rb/2)] FF2, (24)
2Rb(1--t_ _)

where a,,= (2n-l-1)r.

R Ider Umvermt of W_sconsm Theorehcal Chemistry Institute Report No 57• L. Matcha, W. D. Lyon, and J. O. Hirschfe , " " y .... _ . _ .... •
(1964). This has been deposited as Document number 8448 with the ADI Auxiliary Publications r'roject, _mrary oI _.ongress,
Washington 25 D. C. A copy may be secured by citing the Document number and by remitting $8.75 for photoprints, or
$3.00 for 35 mm microfilm. Advance payment is required. Make checks or money orders payable to Chief, Photoduplic_.tion
Service, Library of Congress.

B. O. Pierce, A Slwrt Table of Integrals (Ginn and Company, Boston, ]YIa._x.husetts, 1956), Formulas 678 and 880.

!:
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The constant F°=FI°+F= ° is determined by re-
quiring that Eq. (11) be satisfied. It is possible with

a great deal of care to evaluate F ° explicitly. Log-
arithmic singularities and simple poles have to be
isolated and shown to vanish identically. Integrals
involving the infinite series may be summed by making
use of one integration by parts and an expansion into
partial fractions; details of this procedure are given
in Appendix ii to Ref. 8. However, taking this into
account, F ° is more conveniently determined from
Eq. (11) by a numerical integration procedure such
as Gaussian quadrature, 9 as

F °= -- <_, [FI(X)+F=(_)--F_°--F=°_I,). (25)

The series in F2 converges sufficiently well that only
a small number of terms need be summed, and the
entire integration may be done quickly and easily
on a computer.

Transcendental functions of the above t)1_e may be
expected to appear in the application of perturbation
techniques to more complicated molecules. For the
special choice of parameters a=2, b=O, the function
F= may be determined in closed form. In this case the
solutions are

FI(X) = RcmX/4+ (_m/4) In(),+ 1) +F1 °, (26a)

F, (_) = (/W6) (1-- dW2) _,'+ F,o, (26b)
and

F°=F?+&o

= --{3RE.m2/16}{(n/Is)+(23/ISR)+ (s/3_)+(37)24R,)+In(2)[(2/3R)+ (I/_)+ (I/2R')]

--exp(4R) Ei(--4R)[(2/3R)-- (1/R 2) + (1/2R')]}. (27)

From these equations we obtain, with relatively little effort, expressions for the energies up through third order _0

_=-2 (28)

_m = 8R,/ (4R=+6R+ 3) (29)

d2}= (3Rd_}/2) ((2F°/3R) + (R/45) + (_m/6) {1+(1/2R)- (R/15)+_n(2)/R]--[exp(4R)Ei(--4R)/R]}) (30)

e(_)= 2F% (=)- (F°) =ca)+ (3d_)R/2) ([(ea))=/12]{ (R/2) 4½4 (3/4R) +M exp(4R)/R

4114 (1/2R) ] In(2) +[1-- (1/2R) ] exp (4R) Ei(--4R) }

+ (R_m/90) [1-- (d_)/2) ][R+½+ln (2) -- exp(4R) Ei(--4R) ]4 [1-- (d'3/2)_(RV630) )

+ 3R (_m/2) ' (2F0{ F0+ (_/9) [1-- (d_)/2) ]} [ (1/2R) + (1/2R =)+ ( 1/4R a) ]-- (FO/3R) {/got (R_/5) [1-- (,m/2) ]}

+ [ (d l_) V83{ (R/a) + {+ (7/4R) + (7/4/i e ) + (19/8g a) +ln (2) [-_+ (4/3R) + (3/2R _) + (3/2R') ]

+ exp (4R) Ei (-- 4R) []-- (4/3R) + (5/2R _) -- (3/2R a) -]

+M exp (4R) [(2/3R) -- (1/R =)+ (1/2R') 3+ [In(2)/R] _}

+ (R*/36) [1- (era/2) 32[- (2/35R) + ( 1/5g a) + (1/10R*) ]+d_' {F°+ (R_/18) [1- (d'_/2) "]}

X {½+ (3/4R) + (3/4R 2) + (3/4R a) +In (2) [ (1/2R) + (1/2R*) + (1/4R*) "]

-- exp (4R) Ei( -- 4R) [(1/2R) -- ( 1/2R 2) + ( 1/4R a) ]} -- (d_)/6R) {F o+ (R_/10) [1 -- (,m/2) ]}

X[R+½+ln(2)--exp(4R)Ei(--4R) ]), (31)
where

M= (7[(_,/2) +ln(2)]+ (_/12) +7 ln(2R) + {[ln(2R) ]_/2}

+ln(2) [ln(4R) --Ei(--4R)]-[1--exp(--4R)]{[ln(2)]2/2}

-- {4R--[(4R)=/2=2!]+[(4R)*/3*3!]--[(4R)*/4*4!]+ ... } ), (32)

and 3' is Euler's constant.
it is much easier to evaluate _ ...... a ^,_u,,: _,.v,,,.,-,,, _,er energy

e(=_numerically than to express it in explicit form. The
difficulties in the explicit evaluation are similar to

sw. A. Sanders, W. J. Mcath, and J. O. Hirschfelder, Univer-
sity of Wisconsin Theoretical Chemistry Institute Report No. 44
(1964). This has been deposited as Document number 8448 with
the ADI Auxiliary Publications Project. For further information,
see Ref. 6.

9Z. KopM, Numerical Analysis (Chapman and Hall, Ltd.,
London, 1955), Chap. 7.

those encountered with F °. Cloud-form expressions
for both F ° and d _} are given in Appendix II to Ref. 8
for the special choice of parameters a=b=s. Still, the
procedure leading to these expressions is very tedious,
and the analytic evaluation of the third-order energy
is virtually hopeless. For this reason the integrals in-

_0It should be noted that this work is basically different from
that of I. N. Levine, J. Chem. Phys. 41, 2044 (1964), who used
a single-center expansion of the perturbation about the united.
atom nucleus and derived the energy only through second order.
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TABLE I. Perturbation energies'_ for the ground state of I-h+, neglecting internuclear repulsion and using the unperturbed function
_=N exp(--Ea_/2) coshCRb_/2).

R/O4 -- E (0) -e(*) _(_ -- E (1) -- E_Le

0.0 2.0000000 0.0000000 0.0000000 2.0000000 2.00000
0.2 1.9285376 0.0000831 0.0000005 1.9286203 1.9287,
0.4 1.8005254 0.0002311 0.0000025 1.8007540 1.8007,
0.6 1.6711853 0.0003040 0.0000047 1.6714846 1.67150
1.0 1.4514847 0.0003081 0.0000068 1.4517860 1.4517,
1.4 1.2840155 0.0002601 0.0000068 1.2842688 1.28424
1.6 1.2157074 0.0002358 0.0000064 1.2159368 1.2159_
1.8 1.1556003 0.0002144 0.0000059 1.1558088 1.1558
1.9 1.1282219 0.0002049 0.0000057 1.1284212 - . •
2.0 1.1024428 0.0001964 0.0000054 1.1026338 _ 1.10263
2.1 1.0781414 0.0001889 0.0000052 1.0783250 - - •
2.2 1.0552074 0.0001823 0. 0000049 1.0553847 1. 05538
2.5 0.9936591 0.0001683 0.0000042 0.9938232 -..
3.0 0.9107355 0.0001636 0.0000032 0.9108960 0.91089
4.0 0. 7958779 0.0002082 0.0000014 0. 7960848 . -.
5.0 0. 7241507 0.0002686 --0.0000009 0. 7244202 0. 72442
6.0 0. 6783593 0. 0002719 -- 0. 000(02 0. 6786355 0. 67863
8.0 0.6274265 0.0001371 --0.0(0)02 0.6275698 0.62757

10.0 0.6005292 0.0000469 --0.00(024 0. 6005785 - - •
_, 0.5000000 0.0000000 0.0300000 0.5000000 0.50000

t

1

• As was stated in Ref. 2, the fifth decimal place of EBLS is probably in error

by at least one unit. Furthermore, in the range of 0.2 to 1.8, little sigmficance can

be attached to the last figure; we have indicated this by writing it as a subscript.

The energies are in units of (e_/_). The Bates, Ledsham, and Stewart _aergies,

EBI_, were the best by previously determined energy calculations.

b Note addo_ lit proof: H. Wind [J. Chem. Phys. 4t2, 2371 (1965) ] extended the

BLS calculations to seven decimal places in the energy. Our E(I) agrees with

his up to the last figure.

volved in calculation of e (2) ior general a and b, and

e _a) for all cases (except when b=0) were determined

numerically on the CDC 1604 computer of the Uni-

versity of Wisconsin Computing Center. The accuracy

of the numerical integrations to the number of figures

given in the tables has been assured by comparing

numerical values of _(2) with those obtained from the

explicit expression.

IH. RESULTS AND DISCUSSION

The flexibility provided by the parameters in the

Guillemin-Zener zeroth-order wavefunction allows ex-

tremely accurate determination of the energy through

third order. Kim, Chang, and Hirschfelder s determined

these parameters for the H2 + molecule by the use of

the variational principle, minimizing Eq. (7). We have

used their values for E(0), a and b.

In Table I we have listed for the H2 + molecule the

second- and third-order energies and the energy ex-

pectation value E(1) given by Eq. (14). Here E(1)

is an upper bound to the exact energy. It may be ob-

served that our calculated energies are extremely ac-

curate throughout the entire range of R. The energy

through e(_) agrees to all places with EBLS, the energy

of Bates, Ledsham, and Stewart _ determined by means

of an accurate series expansion, while e(') affects the

energy in the sixth decimal place. Since ESL8 is given

TABLE H. Calculated values of the normalized wavefunctions._

R=0.2 o4 R=2.0 o4 R--9.0 o4

0.0 1.0 1.26697 1.25739 1.25749 0.31719 0.31473 0.31469 0.01020 0.01159 0.01175
2.0 1.04373 1.04098 1.04103 0.08190 0.08251 0.08250 0.00010 0.00011 0.00011
3.0 0.85983 0.85992 0.85994 0.02115 0.02069 0.02071 0.00000 0.00000 0.00000
4.0 0.70834 0.70950 0.70951 0.00546 0.00505 0.00507 0.00000 0.00000 0.00000

0.7 1.0 1.27097 1.26136 1.26147 0.58512 0.38092 0.38089 0.10749 0.10664 0.10665
2.0 1.04703 1.04427 1.04432 0.09944 0.09986 0.09986 0.00108 0.00103 0.00103
3.0 0.86255 0.86263 0.86266 0.02568 0.02502 0.02506 0.00000 0.00001 0.00001
4.0 0.71057 0.71174 0.71175 0.00663 0.00611 0.00614 0.00000 0.00000 0.00000

1.0 1.0 1.27513 _1.26551 1.26561 0.46083 0.45793 0.45789 0.39568 0.39688 0.39679
2.0 1.05046 1.04770 1.04775 0.11899 0.12004 0.12005 0.00397 0.00382 0.00383
3.0 0.86538 0.86547 0.86549 0.03072 0.03010 0.03013 0.00000 0.00003 0.00003
4.0 0.71290 0.71407 0.71409 0.00793 0.00735 0.00738 0.00030 0.00000 0.00000

• The wavefunctlon _ is given by Eq. (2), @CI)=N(_+_(I)), and _tBI_ is the normalized wavefunctlon of Batm_ Ledsham, and Stewart.
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only through the fifth decimal place, it is not possible

to determine the degree of accuracy of our energies
by comparison. (See Footnote b, Table I.)

To see how weli perturbation theory has improved
the zeroth-order wavefunctlon _, we compare in Table
n the "exact" normalized wavefunction xI'BLS of Bates,
Ledsham, and Stewart with g/(1)=N(_k+_m), where
N= (1+ (_ba), _a)))-t. It is clear that the Gulllemin-

Zener function corrected through first order is in much
closer agreement with _si_ than is the zeroth-order

function. Since the functions xI,(1) and _BI_ have
nearly the sane values over all space, _(1) will un-
doubtedly give good values for properties other than

energy.

D

6
T
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Fro. 1. Contour mapping of H_(1)/g_(1) at the equilibrium
separation R= 1.9973a0. Here EBLS= -- 1.1026. The electronic
coordinate r = (x, y, z) is measured from the origin of the conform
elliptic system, with z oriented along the internuclear axis.

To determine further the quality of _(1), we have
investigated the local energy n,12

_u_= Zr_(1)/_(1) ----,+V--UV--,(I_)/(I+FI+F2)-I.

(33)

Comparison with the energy averaged over all space,
given as E_ns, shows that the wavefuncfion is most
accurate when the electron is 4 to 6so from the nuclei

and least accurate near the nuclei. Sample results are
given in a contour map, Fig. 1, at the equilibrium
separation.

Limiting Values

Some interesting limiting forms of the Guillemin-

Zener function are obtained from the following special

n A. A. Frost, R. E. Kellogg, and E. C. Curtis, Rev. Mod. Phys.
32, 313 (1960).

t2j. H. Bartlett, Phys. Rev. 98, 1067 (1955).

TABLE IlL Perturbation energies for the ground state of Ht +,
neglecting internuclear repulsion, using the "united atom" un-
perturbed function _ =N exp(-rA-rn).

R/ao --E(0) --,m --Era --E(1) --EBLs

0.0 2.00000 0.00000 0.00000 2.00000 2.00000
0.2 1.92661 0.00205 --0.00004 1.92862 1.9287o
0.4 1.78808 0.01296 --0.00027 1.80071 1.8007,
0.6 1.64179 0.03003 --0.00024 1.67125 . 1.67150
1.0 1.38462 0.06499 0.00252 1.45038 1.45178

1.4 1.18503 0.09105 0.00824 1.28041 1.2842,
2.0 0.96774 0.11434 0.01847 1.09314 1.10263
2.5 0.83721 0.12462 0.02672 0.97838 ...
3.0 0.73684 0.13028 0.03431 0.88862 0.91089
5.0 0.49624 0.13490 0.05994 0.66733 0.72442

10.0 0.27214 0.12682 0.11510 0.45024 .-.

choices of the parameters a and b:

(1) a=2, b=0,

(2) a=b= 1,

(3) a = b = s, a variational parameter.

A brief discussion of these limits follows.

1. a=2, b--0, the United-Atom Function

The resulting zeroth-order wavefunction

_b=N exp(--rA--r_)---_N exp(--2r) (34)

becomes accurate in the united-atom limit. Table ]:H

contains the results for this case. As expected, the
energies are quite good for small R but become in-
creasingly bad as R becomes large. In order to demon-
strate the asymptotic behavior of the perturbation

energies, we have derived the expressions for Eqs.
(28) through (31) in the limit of large R

,= --2

dI)= 2+ O(R -1)

_(2)= --x-_+ 0 (R-O

d*) = -- 4R/350+ O(ri°).

A comparison of these limits with the asymptotic value
of the exact energy, --½, shows that the perturbation
calculation diverges for large R. For example, the

TAULE IV. Perturbation energies for the ground state of Ht +,
neglecting internuclear repulsion, using the "separated atom" or
Pauling unperturbed function ¢,= N[exp (-- rA) + exp ( -- rB) ].

R/ao --E(O) --,:m E(3) --E(1) --EsLs

0.2 1.48353 0.46513 0.01967 1.74436 1.9287o
1.0 1.28837 0.20117 0.05012 1.40112 1.4517_
2.0 1.05377 0.06027 0.01525 1.09429 1.10263
3.0 0.89242 0.02127 0.00346 0.90952 0.91089
4.0 0.78687 0.00967 0.00055 0.79582 ..-

5.0 0.71920 0.00507 --0.00012 0.72433 0.72442
6.0 0.67573 0.00270 --0.00017 0.67859 0.67863
8.0 0.62673 0.00078 --0.00005 0.62756 0.62757

10.0 0.60030 0.00027 --0.00001 0.60058 ...
0.50000 0.00000 0.00000 0.50000 0.50000
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TABLE V. Perturbation energies for the ground state of H_+, neglecting internuclear repulsion, using Finkeistein-Horowitz unperturbed
1unction _ = 2V['ex!o(--srA) + exp (--srB) ].

R/ao -- E (0) __(2) _(o) -- E (1) -- Enu3

0.0 2.0000000 0.0000000 0.0000000 2.0000000 2.00000
0.2 1.9283280 0.0002936 -- 0.0000014 1.9286203 1.9287o
0.6 1.6667478 0.0047684 --0.0000330 1.6714790 1.67150
1.4 1.2696254 0.0146429 0.0000429 1.2841976 1.28426
1.8 1.1397320 0.0160749 0.0000701 1.1556836 1.1558
2.0 1.0865060 0.0161327 0.0000676 1.1024824 1.10263
2.2 1.0395174 0.0158792 0.0000590 1.0552106 1.05538
3.0 0.8977816 0.0131115 0.0000348 0.9106872 0.91089
4.0 0. 7873345 0.0086428 0.0000920 0. 7959307 • • -
5.0 0. 7192055 0.0050392 0.0001441 0. 7243330 0.72442
8.0 0.6267342 0.0007835 0.0000436 0.6275597 0.62757

I0.0 0.6002979 0.0002689 0.0000101 0.6005767 --.
co 0.5000000 0.0000000 0.0000000 0.5000000 0.50000

e _

energy through third order is above Em_s in the range

R= 0 to R_25 but for R> 25 it falls below Em_s, ap-

proaching minus infinity. Equations (28) through (31)

go to the correct limit, --2, as R approaches zero,

since the zeroth-order wavefuncfion becomes identical

with the exact wavefunction in this limit. Note that

although the energy through third order diverges, the

energy E(1) remains finite and gives an upper bound

to the exact energy over the full range of R, approaching

zero asymptotically. This behavior results from the

fact that the denominator of E(1) goes as R _ in the

limit of large R while the numerator goes as R.

2. a=b= 1, the Yauling Function

The resulting zeroth-order wavefunction 13

= N [-exp (-- rA) + exp ( -- r_) -]

is accurate in the separated atom limit. We would

expect that the resultant energies in this case would

be nearly exact for large R and become progressively

worse as R approaches zero. As shown in Table IV

such is actually the situation.

3. a= b= s, the Finkelstein-lgorowitz Function

The energies resulting from this choice of param-

eters, 14 with s variationally determined, 3 are fairly

accurate throughout the entire range of R, as seen in

Table V. For this case, the expression for the per-

turbafion energy to second order was expanded in

powers of R (through terms in R 3) in the limit of

small R. The results agree with the exact energy ex-

pansion for H_ + as determined by Byers Brown and

Steiner. 15 For large R, ignoring exponentially de-

13L. Pauling, Chem. Rev. 5, 173 (1928).
x*B. N. Finkelstein and G. E. Horowitz, Z. Physik 48, 118

(1928).
_sW. Byers Brown and E. Steiner, University of Wisconsin

Theoretical Chemistry Institute Report No. 33 (1963).

creasing terms, the expansion of e(_) agrees with the

result of Dalgarno and Lynn 16 and of Robinson. _7

Comparison of Tables IV and V shows the advantage

to be gained by using a variationally optimized zeroth-

order wavefunction. The superiority of the scaled

function is particularly striking at small internuclear

separations, where the scaling parameter is significantly

different from unity. These results support the view

that the rate of convergence of the perturbation series

is strongly dependent upon the quality of the zeroth-

order wavefunction.

IV. SUMMARY

The ease of solution of the perturbation equations

depends very greatly upon the form of the zeroth-
order function. The one-electron homonuclear diatomic

molecule probably represents the limiting case in which

analytic solutions can be obtained for a reasonable

unperturbed function. For systems with two or more

electrons, the variables are not separable and one

cannot solve the perturbation differential equations

exactly. It appears, therefore, that the extension of

perturbation calculations to more complicated systems

can only be accomplished by means of variational

techniques.4,b,m
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Computor Prosrams

As the role of computors in atomic and molecular calculations

becomes increasingly important_ the computor programs themselves are

gaining added stature° Often the mathematical formalism for a

particular computation may take less than a month to develop while

the programs for implementing the calculation may require over a year

to complete. Subsequently_ the mathematics is made available to

others in the field through the various journals while the computor

programs are completely inaccessible. This inaccessibility is due

partly to the fact that programs written for a given computor are

incompatible with most of the other computors. This situation has

been partially alleviated by the development of the fortran language.

The fact that listings of programs generally are not published also

tends to make them inaccessible.

In order to make available for general use the computor

programs developed in this calculation, their listing with a detailed

explanation of symbols and operating procedures is given in this

section.

Symbols and Arrays

Certain symbols and arrays are common to all programs. These

are listed here for convenience. The arrays wtgaus(m), ptgaus(m),

wL_as_mj_ and ptlag(m) contain the Legendre Gauss weights and

points and the Laguerre Gauss weights and points respectively.

The symbols and arrays corresponding to the zeroth order wave

function Eqs(lloB-16) and (IIOB-26), are as follows: f(m+l) = fm;

F(_ +I_+I) = _P_ ; sigma =_; P =f ; gtau(_ +I) =_l - The maximumo-
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number of terms in the _ summation is denoted by wavelamand in the

summationby wavemu;energy = _ .o

The arrays corresponding to the matrix elements_ Eqs(ll.E-18) -

(II.E-22) and Eqs(ll.E-48) - (ll.E-53)_are the following:

coeffl(m+l_n+l) = Hm_n;cofrho(m+l_n+l) = Vm_n; cofnom(m+l_n+l) = Sm_n;

summit(re+l) = Nm_o;VA(m+I) = Vm_o.

Additional symbols are: PI =77"; alp2 = 2_ where¢_and_are

defined by Eqs(ll.E-3) and II.B-26). The subroutines Ktime and

Pclock are used to determine the time required for various operations.

Ktime is a library subroutine. The library subroutine Matinv is

used for all necessary matrix inversions.

General Procedure

The procedure for determining the _mconsists of three parts:

the determination of the basic integrals; the evaluation of the matrix

elements; and the determination of the various energy orders. Each

of these is accomplished by separate programs. Data is transferred

between programs by magnetic tape and punched cards. The order of

the program listings are as follows:

i. Fme thod

a. Program Htauint

b. Program Energy

2. Hme thod

a. Program Htauint

b. Program Energy

c. Program Enermat

3. Program Highen
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The programs Htauint are used to calculate the basic integrals while

the programs Energ_ and Ene__matare used to determine the various

matrix elements°

coefficients°

a. Program Htauint

The program Highen determines the perturbation energy

!. Fmethod

Definition of Symbols and Arrays

zCr÷_)/

/
)

,41[,..+ ,) = ,4

7..

Subroutines and Functions

Io Rtaun(mmax, nmax_R,wtgaus_ptgaus,maxgaus) determines

the array Rim, n1# ) for_= i_2_ and 3 and all m and n £ _ax and nmax.

2, BJnt_nax_A2_wtgaus_ptgaus_maxgaus) determines the integrals

A2(m) for all m_mmax=

B, GetA(wt!a_ptlag,maxlag,mmax_Ai,Alp) determines the integrals

Al(m) for all m Z-mmax_



o

maxlag)

and tmax.

5.

Htau (mmax, nmax, tmax.9Alp, nu, H,wtgaus _ptgaus _maxgaus _wt lag, pt lag,

is used to calculate H(m,n,t) for all n,m, and t _ mmax,nmax_

Ht au 12 (mlmax, n imax, timax, m2max _n 2max, t2max, H, H i,H 2,mmax, nmax,

tmat) determines Hl(ml,nl_tl) and H2(m2,n2_t2) for all ml,nl_tl _-

mlmax, nlmax_ t imax and m2_ n2 _t2 _ m2max, n2max, t2max.

Operatin$ Procedure

The program requires the input of maxgaus,maxlag,ptgaus,wtgaus,

ptlag,wtlag_Rzero, lamwave,muwave, p, sigma, aprime, energy, f, and gtauo

The basic integrals R,AI_H,HI,H2, and A2 are automatically calculated

and stored on tape.
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862

43

514

142

973

972

1111 FORMAT{9OX,I2,3HMIN
919 FORMAT(3X,2HR=,FE.2

1U,I2,/4X,2HP=F17.10
2= F17.10,6X,19HTHE

920
187
150
905

PROGRAM HTAUINT
DIMENSION R(15,15,3),H(i3,i3,15),Hi(il,II,15),H2(9,9,15),Al(40),

1 A2(40)
DIMENSION WTGAUS(99),PTGAUS(99),WTLAG(99),PTLAG(99)
DIMENSION STRLAG(IO0)
COMMON /BLOCK 12/ICOUNTP
COMMON/H2PLUS/F{30),GTAU(30),MUWAVE,LAMWAVE,SIGMA,P,RZERO
FORMAT(1Ht)
FORMAT(3X, 5E17.8)

FORMAT (2(/),4X,12,3X,GHRZERO=F7°5,2X,2EI7.IO)

FORMAT(IH1, 4(/),i4X,7HMAXLAG=,I2,4X,SHMAXGAUS= I211)

FORMAT(35HTHIS PACKET CONTAINS H,S FOR RZERO= F7.5)

FORMAT(4X,GHRZERO= FS°5/13HRILTAU,J,NU)= /135(5Ei6.9/)/3HAI=/

1 8(5E16°9/)/3HH= /507(5Ei6.9/),3HHl=,/363(5EiG°9/),/3HH2=,/Z43(
2 5E!6.9/),(5E16.9))

, 2X,12,3HSEC, 3X,12,6HSEC/60)

,2X,25HNUMBER OF TERMS IN LAMBDA ,12,9HAND IN

,GHSIGMA=F17.10,2X,7HAPRIME =

FS ARE EQUAL TO /(4F20.I0))

FORMAT (4X,19HTHE GS ARE EQUAL TO /(4F20.I0))
FORMAT(3X,8HMAXGAUS= 12,7HMAXLAG=I2/,(4E17°lO) )

FORMAT(9OX,2F7.2)

FORMAT(EEl6.9)

M

F 17. IO/4X, 7HENERGY

C

917

READ IN THE GAUS LAGUERRE AND GAUS LEGENDRE POINTS

READ 187 , MAXGAUS,MAXLAG,(PTGAUS(1),I=I,MAXGAUS),(WTGAUS(I),I=I,

IMAXGAUS),(PTLAG(1),I=I,MAXLAG),(WTLAG(1),I=I,MAXLAG)

CONTINUE

C

I01

102

READ IN THE ZEROTH ORDER WAVE FUNCTION

READ 919, RZERO,LAMWAVE,MUWAVE,P,SIGMA,APRIME,ENERGY,(F

IMUWAVE)

IF(EOF, 60)I01,I02
STOP

CONTINUE

READ 920, (GTAU(1),I = I,LAMWAVE)

MLO = I$MHIGH = 3
DELTA = P

(1),I=l,

C IGOGET DETERMINES THE POWER OF PSIZERO IN THE INTEGRAND
C FOR IGOGET = 1 INTEGRAND CONTAINS PSIZERO SQUARE



C

348

349

IGOGET = 1

GO TO (350,349,348),IGOGET

CONTINUE

ALP = DELTA + DELTA

ICOUNT P= i

GO TO 351

CONTINUE

ALP = DELTA+P

ICOUNTP = 2

GO TO 351

350 CONTINUE

ICOUNTP = 3

ALP = P+P

351 CONTINUE

DO 10 I = 1,15

DO i0 J = 1,15

DO I0 K = 1,3

I0 R(I,J,K) = O.

DO ii I = 1,40

A2(1) = O-

il Al(I) = O.

PRINT 862

667

CALL KTIME(MIN,KSEC,DD) $ PRINT IIlI,MIN,KSEC,DD

R(MAXMUM,LMAX,3)

CALLRTAUN(15,15,R,WTGAUS,PTGAUS,MAXGAUS)

CALL KTIME(MIN,KSEC,DD) $ PRINT II!I,MIN,KSEC,DD

CALL BINT (38,A2,WTGAUS,PTGAUS,MAXGAUS)

CALL KTIME(MIN,KSEC,DD) $ PRINT 1111,MIN,KSEC,DD

CALL GETA(_TLAG,PTLAG,MAXLAG,38, At, ALP)

CALL KTIME(MIN,KSEC,DD) $ PRINT !II1,MIN,KSEC,DD

CALL HTAU(13,13,I5,ALP,I,H,WTGAUS,PTGAUS,MAXGAUS,WTLAG,PTLAG,

1MAXLAG)

CALL KTIME(MIN,KSEC,DD) S PRINT ilII,MIN,KSEC,DD

CALL HTAU12(11,11,15,9,9,15,H,H1,H2,13,13,15)

CALL KTIME(MIN,KSEC,DD) _ PRINT I111,MIN,KSEC,DD

PRINT 142, MAXLAG, MAXGAUS

ENZERO = ENERGY

WRITE TAPE 23,RZERO,R,AI,H,H1,H2,A2,ENZERO,DELTA

CONTINUE

GO TO 917

END
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4

39

Ii

47

335

336

337

338

43

SUBROUTINE BINT(NUMINTS,BZ,WTGAUS,PTGAUS,MAXGAUS)

DIMENSION BZ(40),WTGAUS(99),PTGAUS(99),G(99),X(99),P(30,4)
COMMON /BLOCK 12/ICOUNTP

COMMON/H2PLUS/F(30),GTAU(3Oi,MUWAVE,LAMWAVE,SIGMA,PEE,RZERO
DO 39 K = I,MAXGAUS

G(K) = WTGAUS(K)

X(K) = PTGAUS(K)

G(K+MAXGAUS) = G(K)

X(K+MAXGAUS) = -X(K)

DO 11 J = 1, NUMINTS

BZIJ) = O.
MXGAUSS = 2_MAXGAUS

DO 43 M = I,MXGAUSS
FP2 = O.

MAXKAT = MUWAVE

CALL PTN(MAXKAT,1,P,X(M))

DO 47 IQ = 1, MAXKAT,2

FP2 = FP2 + F(IQ)_P(iQ,I)

GO TO (335,336,337),ICOUNTP
CONTINUE

FSQUAR = 1

GO TO 338

CONTINUE
FSQUAR = FP2
60 TO 338
CONTINUE
FSQUAR = FP2_FP2
CONTINUE
DO 43 IA = 1,NUMiNTS
BZ(IA) = BZ(IA) + X(M)_(IA-1)_FSQUAR_G(M)
CONTINUE
END
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SUBROUTINE GETA(WTLAG_PTLAG,MAXLAG,NUMINTS,ARRAYI,SCALE)

DIMENSION WTLAG(99), PTLAG(99), ARRAY(40)

ALIMIT = 1
EAL = EXPF(-ALIMIT_SCALE)/SCALE

DO 38 L = 1, NUMINTS



38

43

ARRAY (L) = O,
DO 43 M = I,MAXLAG

Y = PTLAG(M)/SCALE + ALIMIT

WAVEFU = GNO((Y-1.)/(Y+I.),Y+I.)

DO 43 N = 19 NUMINTS
ARRAY(N) = ARRAY(N) + Y

END
**(N-1)*WAVEFU*WTLAG(M)*EAL
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SUBROUTINE HTAU(MMAX,NMAX,ITAUMX,ALP,NU,H,WTGAUS,PTGAUS,MAXGAUS,
1 WTLAG,PTLAG,MAXLAG)

DIMENSION P(30,4),G(99),XC99),D(15,15,3),WTGAUS(99),PTGAUS(99),

I WTLAG(99),PTLAG(99)

DIMENSION H(13,13,15)

DIMENSION H(NMAX,MMAX,ITAUMX)
DO 39 K = I,MAXGAUS

GIK) = WTGAUS(K)

X(K) = PTGAUS(K)*(1./2.) + 1.12. -
G(K + MAXGAUS) = G(K)

39 X(K + MAXGAUS)= -X(K) + i.

DO 8 M=I,MMAX

DO 8 N= I,NMAX

DO 8 ITAU = I,iTAUMX

8 H(M,N,ITAU) = O.

MAXTWO = 2*MAXGAUS

DO 3 I = 1,MAXTWO

T = XII)

12 MAX = NMAX

13 CALL PTN (ITAUMX,NU, P,I./T)

Z = I./T

CALL ETAUN (MAX,D,NU,ALP_I./T,ITAUMX_WTLAG,PTLAG,MAXLAG)

DO 3 ITAU = 1, ITAUMX

GT = ((1.-T'T) *P(ITAU,NU)*P(ITAU,NU))**(-1)
DO 3 N= L,NMAX

DO 3 M = 1,N

3 H(M,N,ITAU) = H(M,N_ITAU) + GT*D(ITAU,M,NU)*D(ITAU,N,NU)* G(1)*I./

1 2.

DO 81 ITAU = I,ITAUMX

TAU = ITAU - 1

FNU = NU - 1
KP = 1
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82

81

30

LIM1 = TAU - FNU + i.

L IM 2 = TAU + FNU

DO 82 I = LiMI,LIM2

KP = KP*I

COF = (-1)**(NU-1)*KP
DO 81 N = 1,NMAX
DO 81 M = I,N

H(M,N,ITAU) = COF*H(M,N,ITAU)

DO 30 ITAU = i, ITAUMX

DO 30 N = I,NMAX

DO 30 M = I,N

H(N,M,ITAU) = H(M,N,ITAU)

END

39

38

C

43

DIMENSION D(15,

EAL = EXPF(-ALP

U = EXPF(-IY-1.

DO 39 K = 1,MAX

G(K) = WTLAG(K)

SUBROUTINE ETAUN(JMAX,D,NU,ALP,Y,ITAUMX,WTLAG,PTLAG,MA×LAG)
DIMENSION G(99),XI(99),X2(99),WTLAG(99), PTLAGI99)

15,3),Pl(30,4),P2(30,4)

)/ALP

)*ALP)

LAG

XI(K)= PTLAG(K)IALP +I.

X2(K) = PTLAG(K)IALP +Y

DO 38 J= 1,JMAX

DO 3B LTAU = 1, ITAUMX

D(LTAU,J,NU) = O.

DO 43 M = I,MAXLAG
CALL PTN(IT

CALL PTN(IT

GNI = GNO((

GN2 = GNO((

COFFA = GN1

AUMX,NU,P2,X2(M))

AUMX,NU,PI,XI(M))

Xi(M)-I.)/(XI(M)+I.),XI(M)+I.)

X2(M)-I.)/(X2(M)+I.),X2(M)+I.)

*G(M)*EAL

W = U*GN21GN1

DO 43 J = I,JMAX

COFXiJ = Xi(M)**(J-I)*COFFA

COFX _'_ = ^_V_(M)**{J-I)*W*COFFA
DO 43 LTAU = 1, ITAUMX
D(LTAU,J,NU)=D(LTAU,J,NU)+PI(LTAU,NU)*COFXlJ-P2(LTAU,NU)*COFX2J
END
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I

335

336

337

338

FUNCTION GNO(W,Z)

COMMON/H2PLUS/F(30),GTAU(30),MUWAVE,LAMWAVE,SIGMA,P,RZERO

COMMON /BLOCK 12/ICOUNTP

SUM = 0

DO i I = I,LAMWAVE

SUM = SUM + GTAU(I)_W_(!-!)

GO TO (335,336,337),ICOUNTP

CONTINUE

GNO = I

GO TO 338
CONTINUE
GNO = (Z_SIGMA_SUX)
GO TO 338
CONTINUE
GNO = (Z*_SIGMA*SUM)_2
CONTINUE
END

C
39

SUBROUTINE RTAUN(MAXMUM,LMAX,RTAUV,WTGAUS,PTGAUS,MAXPT)

DIMENSION P(30,4),G(99),X(99),RTAUV(15,15,3),WTGAUS(99)

DIMENSION PTGAUS(99),RA(15,15)

COMMONIH2PLUS/F(30),GTAU(30),MUWAVE,LAMWAVE,SIGMA,PEE,RZERO

COMMON /BLOCK 12/ICOUNTP
DO 39 K = I,MAXPT

G(K) = WTGAUS(K)

X(K) = PTGAUS(K)

G(K+ MAXPT) = G(K)

X(K+MAXPT) = -X(K)
MAXMUM = 2*KMAX + 7



DO II J = I, MAXMUM
DO 11 K = !,LMAX
DO 11 M = 1,3

11 RTAUV(J,K,M) : O.
DO IO NU = 1,3

DO 38 J = !,MAXMUM

DO 38 K = I,LMAX

B8 RA (J,K) = O.

MAXPTS = 2*MAXPT

DO 43 M = I,MAXPTS

FP2 = O.

MAXKAT = MUWAVE

CALL PTN (MAXKAT,I_P,X(M))

DO 47 IQ = I,MAXKAT ,2

47 FP2 = FP2 + F(IQ)*P(IQ,I)

GO TO (335,336,337),ICOUNTP

335 CONTINUE

FSQUAR = !
GO TO 338

336 CONTINUE
FSQUAR = FP2
GO TO 338

337 CONTINUE
FSQUAR = FP2_FP2

338 CONTINUE
CALL PTN (MAXMUM,NU,P,X(M))

43

10

PROD = FSQUAR_G(M)_(SQRTF(1.-XIM)_X(M)))**(NU-1)
DO 43 IA = 1,LMAX
PRODUCT = PROD_X(M)_(IA-!)
DO 43 LTAU = 1,MAXMUM
RA(LTAU,IA) = RA(LTAU,IA) + PRODUCT_P(LTAU,NU)
CONTINUE
DO 10 J = 1,MAXMUM
DO 10 K = I, LMAX
RTAUV(J,K,NU) = RA(J,K)
CONTINUE
END
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SUBROUTINE HTAUI2(MMAX,NMAX,IMAX,NMAX2,MMAX2,1MAX2,H,HI,H2,MZERMAX

I ,NZERMAX,IZERMAX)
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DIMENSION H(13,13,!5) ,Hi (i!,ii,15) ,H2 (9,9,15)

C DIMENSION H(t'IZERMAX,NZERMAX,IZERMAX),HI(MMAX,NMAX,IMAX),H2(NMAX2,

C 1 MMAX2, IMAX2 )

DO 49 I = I,MMAX

DO 49 J = I,NMAX

DO 49 K = I,IMAX

49 Hi(I,J,K) = O.

DO 48 I = I,NMAX2

DO 48 0 = I,MMAX2

DO 48 K = I,IMAX2

48 H2(I,J,K) = O.

DO 50 I=2,1NAX

DO 50 N = I,NMAX

DO 50 M=I ,N

T = I-i

50 0 Hi(M,N,I) = T_(T+I.)/(2.{T + i.)_(( T + I.)_H(M,N,I+I) -

I(2._T+ I.) w H(M + I,N+i, i) + T_H(M,N,I - i))

DO 30 ITAU = 2,1MAX
DO 30 N = 1,NMAX

DO 30 M = I,N

30 HI(N,M,ITAU) = HI(M,N,ITAU)

DO 51 I = 3,1MAX2

DO 51 N = 1,NMAX2

DO 51 M = I,N

T = I-1

51 OH2(M,N,I) = (T+2.)_(T+i.)_T_(T-1.)/((2. _T +3.}*

i(2.*T + i.) _ (2._T-I.))_(T_(2._T - I.)_((2._T + 3.)/

2 ((T + I.)_(T + 2.)))_

3HI(M,N,I + i)- (2._T + 3.)_(2._T-I.)_ ((2._T+I.)/(T_(T + I.)))_

4HI(M+I,N+I,I) +(T+I.)_(2._T + 3.)_((2._T-I.)/((T - I.)_T))

5 eHl(M, N, I - I))

DO 40 ITAU = 3,IMAX 2

DO 40 N = i,NMAX2

DO 40 M = I,N '"

40 H2(N,M,ITAU) = H2(M,N,ITAU)

END

C

SUBROUTINE PTN(LTAUMX,NU,P,X)

CALCULATES ASSOCIATED LEGENDRE POLYNOMIALS PTAUNU

DIMENSION P(30,4)



DO i M = 1,30
DO I N : 1,4

i P(M,N) = O.
P(l,!) = i.
P(2,1) = X
P(2,2) : SQRTFIABSF(I.-X*X))
P(3,2) : 3.*X'P(2,2)
P(3,3) = 3.*(1. - X'X)
P(4,3) : 5.*P(3,3)*X

FNU = NU

LIMU = NU + I

DO 44 LTAU = LIMU,L TAUMX
TAU = LTAU

440P(LTAU + I,NU) = 1./(TAU - FNU +I.)*((2.*TAU -l.)*X*

IP(LTAUtNU) - (TAU + FNU - 2.)*P(LTAU - I,NU))

END

END

136
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b. Program Energy

Definition of Symbols and Arrays

Man(i), nan(i), jan(i), and ipan(i) contain the powers of _t,_Z_a)_.

th
and r12 for the i term in the basis set. Equivalent arrays are

re(i), n(i), j(i), k(i) and ip(i).

order wave function coefficients.

Etwo =_Z_ and_ Entre = _ 3

The array bmat contains the first

Fnorm =i/ _ , Enone = 61 ,

Subroutines and Functions

i. The function X(m_n_j_k_ip) is used to calculate the integrals

M 2°(m, n, j,k_ ip)

2. The functions Z2zer_ Zlzer_ Zonej Zlone_ Ztwo_Zltwo_ Ztre_

Zneg_ Zlnegj Z2neg_ and Zzer are all part of function X.

3. The subroutine Amatsav is used to call the matrix inversion

subroutine.

4. The function Hsmall calculates Hij-(II_E-31)

Operatin_ Procedure

The basis set is inputed from punched cards and stored in the

arrays m_n_j_k_ and ip. Rzero_ R_ AI_ H_ HI_ H2_ A2_ enzero_ and

delta is then inputed from tape. The program subsequently calculates

the energy through third order and stores the matrix elements on tape

for use by program Highen.

Note

o

During the calculation certain_ are required more than once.

To prevent a repeated evaluation of these integrals a number of memory

locations are reserved for their storage. Upon entering function X_

a search is made of these to determine whether or not the desired
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primitive integral has been previously calculated. If not, it is

consequently evaluated and stored. Common block 4 which is located

in bank i is reserved for this storage. Since this program was written_

approximately 500 memory locations in bank 1 have been taken over by

the computing center in order to store tape handling subroutines° As time

proceeds_ more locations in Bank 1 will be removed from user access.

Because of this the program as it now stands overflows the memory.

This condition can be corrected by decreasing the size of Xmattwo_

Xmat and Xmatzer in common block 4. Unfortunately this removes some

o
of the storage locations for the M 2 and forces the recalculation of

certain of these integrals. The array sizes are decreased according

to the formulas Xmattwo( 2(mattwo + 1) 4 ), Xmat( 2(mat + 1) 4 ) and

Xmatzer( 2(matzer + 1) 4 ) where mattwo_ mat and matzer are integers.

Their value as of now is mattwo = 6_ mat = 7_ and matzer = 8.
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C
C
C
C

461

460

827

972

iiii

29

99

47

596

407

PROGRAM ENERGY

PROGRAM READS FROM TAPE, THR _ASIC INTEGRALS. THE 6ASIS SET

EXPANSION TERMS ARE READ FROM CARDS. THE PROGRAM THEN CALCULATES

MATRIX ELEMENTS WHICH IT STORES ON TAPE. FINALLY, THE ENERGY

THROUGH THIRD ORDER IS CALCULATED.

DIMENSION MAN(50), NAN(50),JAN(50),KAN(50),IPAN(50)
DIMENSION STRBMAT(50), MSTOR(50)

DIMENSION SUMMIT(60),COEFFI(50,50),BMAT(50),EONE(2),VA(60)
BANK,(I),/4/,/3/,(O),/7/,/2/,ENERGY,AMATSAV,ZZER,Z2ZER,MATINV,

i ZNEG,ZINEG,HSMALL,X,ZIZER,ZONE,ZIONE,ZTWO,KTIME

COMMON/T/VCHECK(50),COFNOM(50,50),COFRHO(50,50)
COMMON/ I /FNORM,PI,RZERO

COMMON-/ 2 /M(IOO),N(IOO),J(IOO),K(IOO),IP(IO0)
COMMON/ 3 /AI(40), A2(40),R(15,15,3},H(13,13,15),HI(II,II,15),

1 H2(9,9,15)

COMMON/ 4 /XMATTWO(4802),XMAT(8192),XMATZER(13122),MATZER,

1 MAT, MATTWO

FORMAT(4{I),7X,5HEZERO,12X,4HEONE,13X,4HETWO,12X,6HETHREE,12X,

i 4HESUM,12X,GHEEXACT,12X,4HDIFF,/,7(2X,FI3olO,2X))

FORMAT(IHI,5(/)55X,3HR =,F5.2,2(/),37X,42HTHE NUMBER OF TERMS IN T

IHE WAVEFUNCTION IS ,12,3(/),40X,12HWAVEFUNCTION, 20X,IIHCOEFFICIEN
2T , 2(/),(4!X,SI2,20X,FI2.9))

FORMAT(3X,GHRZERO= , EI6.9, 4X,EIG.9)

FORMATI4X,GHRZERO= F8.5/i3HR(LTAU,J,NU)= /135(5EI6.9/)/3HAI=/

IS(SEIG.9/)/3HH = /253{SEI6.9/),254(5EI6.9/),3HHI= ,/200(5EI6.9/),

2 I63(5EI6.9/),/3HH2= ,/243(5EIG.9/),(SEI6.9))

FORMAT(9OX,I2,3HMIN, 2X,12,3HSEC, 3X,I2,6HSEC/60)
FORMAT(IHI,I2X,6HRZERO=, FB.5,4X,6HENONE=,E20.IO,4X,

i 7HENZERO=, E20.IO, 3X,6HFNORM=, E20.10)

FORMAT (3X,F5.3)

FORMAT(3X,II6HDELTA=F7.5)

FORMAT (IHI)

FORMAT(3X,6HRZERO= , F5.2,3X,14HFUNCTION

IM COEFF VA AND SUMMIT FOLLOW /(4E20.I0))

20 FORMAT(3X,12/(13(511,1X)))
22 FORMAT(GX,3(7HCOEFFIII2,1H,I2,2H)= El7.10))

56 FORMAT(7X,26HTHE DETERMINANT OF COEFFI= EI7.IO)

67 FORMAT(SX, 5HETWO=EI7.10)

SIZE= ,I2,40HCOFRHO COFNO

XI(MO,NO,JO,KO,IO)= X(MO,NO+2,JO,KO,IO)-X(MO,NO,JO,&O+2,10)

C XMATTWO(4,802),XMAT(8,192),XMATZER(13,122)COFNOM(50,50), COFRHO(50,50)
CMATTWO = 6, RAT = 7, MATZER = 8

C XMATTWO(2_(MATTWO + I)_4),XMAT(2_(MAT+I)_4), XMATZER(2*(MATZER+I)_4)

MATTWO= 6$MAT=7$MATZER=8

PI = 3._"15926_3_8q_ _ - -

CALL KTIME(MIN,KSEC,DD) $ PRINT IIII,MIN,KSEC,DD

C READ TERM IN BASIS EXPANSION
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READ 20,MN, (M(I),N( I ),J{ I ),K( I),IP(1) ,I=I,MN)
IF (EOF,60) 163,164

163 STOP

164 CONTINUE
DO 300 I = I,MN

M(I+MN) = N(I)

N(I + MN) = M(I)

J(I + MN) = K(1)

K(I + MN) = J(1)

300 IP(I + MN) = IP(1)

19 CONTINUE

C INPUT BASIS INTEGRALS FROM TAPE

READ

IF(EOF923)263,264
263 STOP

264 CONTINUE

CALL KTIME(MIN,KSEC,DD) $ PRINT

LIMIT1= 2*(MAT+l)**4

LIMIT2 = 2*(MATZER+I)**4

LIMIT 3 = 2*(MATTWO + i)*-4
DO 999 I = I,LIMITI

999 XMAT(1) = O.

DO 998 I = 1,LIMIT2

998 XMATZER(1) = O,

DO 997 I = 1,LIMIT3

99? XMATTWO(1) = O.

'CALL KTIME(MIN,KSEC,DD) $ PRINT

FRONT = (RZERO**3*PI/4.)**2
C

C

C

C

C

TAPE 23,RZERO,R,A1,H,H1,H2,A2,ENZERO,DELTA

IIII,MIN,KSEC,DD

IIII,MIN,KSEC,DD

CALCULATION OF NORMALIZATION INTEGRAL

FNORM : I/SQRTF(FRONT*XI(O,O,O,O,O)]
RBI = (RZERO**3*PI/4)**2*FNORM**2

CALCULATION OF FIRST ORDER ENERGY

ENONE = RBI*2./RZERO*Xl(O,O,O,O,-1)

CALL KTIME(MIN,KSEC,DD) $ PRINT. IIII,MIN,KSEC,DD

CALCULATION OF MATRIX ELEMENTS

DO 861 i = i,MN

DO 881 L = I,I

IF(M(I+MN).EQ.M(1).AND.N(I+MN).EQ.N(I).AND.J(I+MN).EQ.J{I).AND.
IK(I+MN).EQ.K(I).AND.IP(I+MN}.EQ.IP(1))IgO_191



190

192

193

191

194

195

196

C
C

C

390

6O
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IF(M(L+MN).EQ.M(L).AND.N(L+MN).EQ.N{L}.AND.J(L+MN).EO.J(L).AND.
IK(L+MN_.EQ.K(L).AND.IP(L+MN}.EQ°IP{L)}192,193
Wl : HSMALL(I,L,XMATRX) $ W2:WISW3=WlSW4:W1

GO TO 196
WI:HSMALL(I,LoXMATRX}$W2:WZSW3:HSMALL{I,L+MNtXMATRX)$W4:W3

GO TO 196
IF(M(L+MN).EQ.M(L).AND.N{L+MN).EQ.N(L).AND.J(L+MN).EQ.J(L).AND.

IK(L+MN).EQ°K{L}.AND.IP(L+MN)°EQ°IP(L)}194,195
WI=HSMALL{I,L,XMATRX)$W2=HSMALL(I+MN,L,XMATRX) SW3=WISW4=W2
GO TO 196
CONTINUE

Wl = HSMALL(I,L,XMATRX)

W2 = HSMALL(I+MN,L,XMATRX)

W3 = HSMALL(I,L+MN,XMATRX}

W4 = HSMALL{I+MN,L+MN,XMATRX}

CONTINUE

COEFFI{I,L) = WI+W2+W3+W4

881COEFFI(L,I} = COEFFI{I,L)

15

PRINT 22,{(MO,NO,COEFFI(MO,NO),MO=I,MN),NO=I,MN)

CALCULATION OF {0,i} AND (O,V,I)

CALL KTIME(MIN,KSEC,DD) $ PRINT IIII,MIN,KSEC,DD
DO 60 I = 1,MN

SUMMIT {I) = O.

VA(I} = O.

VYA = XI{M(I},N{I),J(I),K{I},IP{I}-I)

VYB = XI{M{I),N(1),J(1),K{I),IP(I)}

VYC = VYA $ VYD = VYB

SUMMIT{I) = RBI_(VYB+VYD)

VA{I) = -RBI_{2./RZERO_(VYA+VYC) - ENONEw(VYB+VYD))

CALL KTIME{MIN,KSEC,DD) $ PRINT IIII,MIN,KSEC,DD

913 CONTINUE

CALL AMATSAV{MN,COEFFI,BMAT,VA,PI,DET)

EP = O.

CALCULATION OF SECOND ORDER ENERGY

DO 15 I : I,MN

EP = EP + BMAT(I)eVA(I)

ETWO = -EP

SUM2 = O.

SUM1 = O.

CALL KTIME{MIN,KSEC,DD)

MNTWO = 2WMN
DO 9 JQ = 1,MN

DO 9 IQ = 1,JQ

JUCK = J{IQ} + J{JQ)

KUCK = K{IQ) + K(JQ}

MUCK = M{IO) + M{JO)

NUCK= N(IQ) + N{JQ}

$ PRINT IIII,MIN,KSEC,DD



910
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IPUCK = IPIIQ) +IP(JQ)
JU = J(IQ) + J(JQ + MN}
KU = K(IQ} + K(JQ+MN}
MU = M(IQ} + M(JQ+MN}
NU = N(IQ} + N(JQ'+MN}
IPU = IP(IQ) + IP(JQ+MN)
PORK = (Xl{MUCK,NUCK,JUCK,KUCK,IPUCK-I)

1 + Xl(MU,NU,JU,KU,IPU-1))*2
FORK =(Xl(MUCK,NUCK,JUCK, KUCK, IPUCK)

I + XI(MU,NU,JU,KU,IPU )}*2
COFNOM(IQ,JQ} = RBI*FORK
COFRHO(IQ,JQ} : RBI*PORK*2/RZERO
COFNOM(JQ,IQ) = COFNOM(IQ,JQ}
COFRHO(JQ,IQ} : COFRHO(IQ,JQ}
CONTINUE
DO 910 IQ= 1,MN
DO 910 JQ = I,MN
SUM1 = SUM1 + 6MAT(IQ}*BMAT(JQ}*(COFRHO(IQ,JQ) _

1 ENONE*COFNOM(IQ,JQ)}
CONTINUE
DO 11 I = 1,MN
SUM2 = SUM2 + BMAT(I}*SUMMIT(I}

CONTINUE
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C CALCULATION OF THIRD ORDER ENERGY

747

749

748

ENTRE = SUMI-2,_ETWO*SUM2

EEXACT = -1.888734

ESUMM= ENZERO + ENONE + ETWO + ENTRE

DIFF = -1.88873 - (ENZERO + ENONE + ETWO + ENTRE}

PRINT.460,RZERO,MN,(M(I),N(I},J(I},K(1),IP(I},BMAT(1),I=I,MN)

PRINT 461, ENZERO,ENONE,ETWO,ENTRE,ESUMM,EEXACT,DIFF

PRINT 596

DO 747 JJ = I,MN

STRBMAT(JJ) =.0.

DO 748 JJ = I,MN

TRY = ABSF(BMAT(1))

NUMKP = 1

DO 749 I = I,MN

IF{TRY-ABSF(BMAT{I)})749,749,731

IF{TRY-ABSF(BMAT(I}})731,749,749
731 TRY = ABSF{BMAT{I))

NUMKP = I

CONTINUE

MSTOR(JJ) = NUMKP

STRBMAT{JJ) = BMAT{NUMKP)

BMAT(NUMKP) = 0.0

CONTINUE
DO 395 I = I,MN
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395

257

431

1199

MAN(1)=M(MSTOR(1))$NAN(II=N(MSTOR(I})$JAN(1)=J(MSTOR(1))
KAN(1) = K(MSTOR(I))
IPAN(I) = IP(MSTOR(I})

PRINT 460, RZERO.MN.IMANII),NAN(1),JAN(1).KAN(1).IPAN(1),
ISTRBMAT(1),I=I.MN)

CONTINUE

CONTINUE

WRITE TAPE 47,

1 RZERO,MN.ENZERO.((COFRHO(I.JO).I=I.MN).JO= 1,MN).((COFNO

2M(I,JO), I = 1.MN),JO= 1.MN),((COEFFI(I,JO},I = 1,MN),JO= 1.MN),

3 (VA(1),I=I.MN),(SUMMIT(1).I=I.MN),ENZERO,ENONE.

4 (M(I).N(I),J(1).K(1).IP(I),I=I.MN)

CONTINUE
GO TO 19

END

38

41

39

40

18

17

15

19

90

FUNCTION ZNEG(M.N,J,K)

DIMENSION TEl2)

COMMON/ 3 /AI(40).

i H2(9,9,15)
IFORMAT( 2E17.10,12, 23HTO0
IF (J-2*(J/2))38,39,38
IF(K-2*(K/2))40,41,40
ZNEG = O,
RETURN
IF(K-2*(K/2))41,40,41

CONTINUE

FORMAT(//.14X,17HOVERLOAD IN

IF(M-12)17.17,15

IF (N-12) 19.19,15

PRINT 18.M.N

CONTINUE

TERM : O.

SUMM = O.

LTAU = 0

I=O

TEIKP = 1.E128

TE2KP = 1°E128

LTAU = LTAU + i

T = LTAU - 1

A2(40),R(iS,15,_),H(13,13,15),HI{II,II,15),

MANY TAUS IN VZNEG )

Z NEG, 2HM=I2,2HN=I2)
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,b

5

C

190 .

192

191

194

193

71

4

9

8

1

I = I+i
TE(I}=

IF(I-2) 3,5,5
I=0

TERM : TE(1) + TE(2)

PRINT 71, TE(1) , TE(2),$UMM

IF(TE(1) - TE(2))191,191,190

CONTINUE

IF(ABSF(TE(1))-ABSF(TEIKP))192,1,1
TEIKP = TE(1)

GO TO 193

IF(ABSF(TE(2))- ABSF(TE2KP))194,1,1

TE2KP = TE(2)

CONTINUE

FORMAT (17HTE(1),TE(2},SUMM= , 5E16.9)

TE(1) = O.

TE(2) = O.

SUMM = SUMM + TERM

IF(LTAU - 14) 8,9,9

CONTINUE

PRINT 90, TERM,SUMM,LTAU
GO TO 1

CONTINUE

IF (ABSF(TERM/SUMM)-.IE-7)I,3,3

CONTINUE

ZNEG = SUMM

END

(2.*T+I.}*R(LTAU,J+I,I)*R(LTAU,K+I,I)*M(M+I,N+I,LTAU}
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FUNCTION ZINEG(M,N,J,K)

DIMENSION TE(2}
COMMON/ 5 /AI(40), A2(40},R(15,15,3},H(13,13,15),HI(II,II,15},

i H2(9,9,15)

90 FORMAT( 2E17.10,12 ,23HTO0

IF (J-2*lJ/2))38,39,38

38 IF(K-2*(K/2})40,41,40

41 ZINEG = O.

RETURN

39 IF(K-2*(K/2)}41,40,41

40 CONTINUE
18 FORMAT(//,14X,i7HOVERLOAD IN

MANY TAUS IN VZlNEG)

ZINEG, 2HM=IZ,2HN=I2)



145

IF(M-IO)I7,17,15
17 IF (N-IO) 19,19,15
15 PRINT 18,M,N
19 CONTINUE

SUMM = O.

TERM : O.

I = 0
TEIKP = I.E128

TE2KP = 1.E128

LTAU = 1
3 LTAU = LTAU + 1

T = LTAU - 1

5

C

190

192

I = I+l
TE(I} = -I./(T*(T+I.))*R(LTAU,J+I,2)*R(LTAU,K+I,2)*

I(2.*T+I.}/(T*(T+I.)}*HI(M+I,N+I,LTAU)

IF(I-2) 3,5,5

I = 0

TERM = TE(1) + TE(2}

PRINT 73, SUMM, TE(1) , TE(2)

IF(TE(1) - TE(2))191,191,190

CONTINUE
IF(ABSF(TE(1))-ABSF(TEIKP)}192,1,1

TEIKP = TE(1)

GO TO 193
191 IF(ABSF(TE(2)}- ABSF(TE2KP)}194,1,1
194 TE2KP = TE(2)

193 CONTINUE

73 FORMAT (IIHSUMM,TI'T2= , 3E17.10)

TE(1) = O.

TE(2} = O.

4 SUMM = SUMM + TERM

IFILTAU-15)8,9,9

9 CONTINUE
PRINT 90, TERM,SUMM,LTAU

GO TO 1

8 CONTINUE

C THE LIMIT .1E-7 SHOULD BE EXPERIMENTED WITH

IF (ABSFITERM/SUMM)-.IE-7)I,3,_

1 CONTINUE

ZINEG = SUMM

END
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4OO

8

FUNCTIONZ2NEGIM.N,J,K)

COMMON/ 3 IAI(40), AZ(40),R(15,15,3),H(13,13,15),HI(II,II,15),
I H2(9,9,15)

FORMAT(//4X,2OHLTAU IN Z2NEG EQUALS 13,//)

FORMAT(17HOVERLOAD IN Z2NEG ,2HM=I2,2HN=I2,4HLIM=I2)
IF(J-2_(J/2))38,39,38

38 IF(K-2W(K/2})40,41,40

4i Z2NEG = O.

RETURN

IF(K-2_(K/2))41,40,4I

CONTINUE
\

IF (J - K) I7,i7,I8

i7 LIM = J + 3

GO T 0 i9

LIM = K + 3

IF(LIM-12)6,6,5

IF(M-8)7,7,5

IF(N-8)9,9,5
PRINT 8,M,N,LIM

LIM = 6

9 CONTINUE

SUMMI = Oo

SUMM2 = O°

SUMM KP = 0

CONST = I

DO I7I "KTAU = 3,i3,2

IF (CONST-I) i09,I09,i7i

CONTINUE

JAKE = KTAU + i

DO 209 LTAU = KTAU,JAKE

T = LTAU - I

SUMM i = SUMMI + (I./((2-_T + 3,)_(2._T - I.)* (T + 2.}_(T + i.)

I _T_(T - I.)))_R(LTAU , J + I, 3}_R(LTAU, K + i, 3)_((2°_T + 3.)

2 _(2.wT + I.)_(2._T - I.)/((T + 2.)_(T + I.)_T_(T - I.))) _ H2

3 (M + I,N+I,LTAU)

209 CONTINUE

IF (ABSF((SUMMI-SUMMKP)/SUMMI) - I.E-08) iiO,iIO,iii

39

40

18

19

6

7

5

109

•ii0 CONTINUE

CONST = 2
IF(KTAU-13)I71,183,183

183 CONTINUE
PRINT 400, LTAU
GO TO 171

11! CONTINUE
SUMM KP = SUMMI

171 CONTINUE
CONST = 1



113

210

114

184

SUMMKP = O.
DO 172 KTAU = 1,13,2
IF ( CONST-I) 113,113,172
CONTINUE
JAIL = KTAU + 1

DO 210 LTAU = KTAU,JAIL
T = LTAU - 1

SUMM 2 = SUMM2 + (2.*T + I.)*(R(LTAU,J + I,i) -R{LTAU ,J + 3,1))

1_ ( R(LTAU,K + 1,1) -R(LTAU, K+ 3,1))* (H(M+3,N + 3,LTAU)
2 -H(M + 3, N + 1,LTAU) - H(M+I,N + 3,LTAU)

3 + H(M+I,N+I,LTAU}}

CONTINUE

IF(ABSF((SUMM2-SUMMKP)/SUMM2)-I.E-08) 114,114,115
CONTINUE

CONST = 2

IF(KTAU-13)I72,184,184

CONTINUE

PRINT 400, LTAU

GO TO 172

115 CONTINUE

SUMMKP = SUMM2

172 CONTINUE

Z = 1./2.*(SUMMI + SUMM2)

Z2NEG = Z
RETURN

END

2

3

4

FUNCTION ZZER(M,N,J,K)

COMMON/ 3 /All40), A2(40),R(15,15,3},H(13,i_,I_},HI(II,II,15},

i H2(9,9,15)

IF (J-2_(J/2)) 2,2,3
IF (K-2*(K/2}) 4,4,3

ZZER = O.

RETURN ,

ZZER = AI(M+I}*AI(N+I}*A2(J+I)*A2(K+I)

END
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C
199
200

39
40
43

42
60
74

75
76
77

FUNCTION
COMMON/

I MAT, MATTWO
,REZTAM,)OO62(REZTAMX,)5521(TAMX

FORMAT(/IOX,SI3)
FORMAT(4OX,EI7.10)
IF(J-2*(J/2)}38,39,38

38 IF(K-2*(K/2))40,41,40
41 X = O.

RETURN
IF(K-2*(K/2))41,40,41
IF(IP)42,43,42
IF(J-2*(J/2))41,42,41
IF(IP) 60,60,61
IF(M-MATZER)74,74,3
IF(N-MATZER) 75,75,3
IF(J-MATZER)76,76,3
IF(K-MATZER)77,77,3
Y = XMATZER(M+I+(MATZER+I)*N

1 +(MATZER+I)**4*(IP+I))
PRINT 200,Y
IF(Y) 48,79,48

79 COUNT = O.
GO TO 2

6i IF(IP-2) 62,62,63
62 IF(M-MAT)44,44,3

44 IF (N-MAT)45,45,3

45 IF(J-MAT)46,46,3

46 IF(K-MAT)47,_7,3

47 Y = XMAT(M+I+(MAT+I}*N

i *(IP-I))

IF(Y) 48,49,48

48 X = Y

RETURN

49 COUNT = i.

GO TO 2

63 IF(M-MATTWO)84,84,3

84 IF(N-MATTWO)85,85,3

85 IF(J-MATTWO)86,86,3

86 IF (K-MATTWO)87,87,3
87 Y = XMATTWO(M+I+(MATTWO+I)*N

i +(MATTWO +I)*'4"(IP-3))

IF(Y) 48,89,48

X(M,N,J,K,IP}

4 /XMATTWO(4802),XMAT(8192),XMATZER(13122),MATZER,

+ {MATZER+I)**2*J

,)025(OWTTAMX/4KCOLB/

+(MATZER+I)**3*K

+(MAT+I)**2*J + (MAT+I)**3*K + (MAT+I)**4

NOMMOC

+ (MATTWO+I)**2*J+(MATTWO+I)**3*K



89

160

3

C

106

2

159

161

162

163

164

165

166
5O

53

54

55

52

51

149

COUNT . = 2.
GO TO 2

XX= ZZER(M+2,N,J,K) - ZZER(M,N,J+2,K)

GO TO 50

CONTINUE

PRINT I06,M,N,J,K,IP

FORMAT (23HOVERFLOW IN FUNCTION X 3X,5(12,2X)}

COUNT = 3.

IF (IP) I59, I60, i6i
XX= ZNEG(M+2,N,J,K) - ZNEG(M,N,J+2,K)

GO TO 50
IF(IP-2) i62,i63,i64

XX= ZONE(M+2,N,J,K ) - ZONE(M,N,J+2,K)

GO TO 5O

XX= ZTWO(M+2,N,J,K) - ZTWO(M,N,J+2,K)

GO TO 50
IF(IP-4) 165,166,166

XX= ZTRE(M+2,N,J,K) - ZTRE(M,N,J+2,K)

GO TO 50

XX= ZFOR(M+2,N,J,K) - ZFOR(M,N,J+2,K)
IF(COUNT - I.)53,52,54

NUMBER = (M+I+(MATZER+I)*N + (MATZER+I)*e2_J ÷(MATZER+I)**3*K

i +(MATZER+I)**4_(IP+I))

XMATZER (NUMBER) = XX

GO TO 5i

IF(COUNT - 2.) 55,55,51

NUMBER = (M+I+(MATTWO+I)_N + (MATTWO+I)_*2*J+(MATTWO+I)_*3*K
i +(MATTWO +I)_'_4_(IP-3))

XMATTWO(NUMBER) = XX

GO TO 51

NUMBER =(M+I+(MAT+I)_N +(MAT+I)**2*J + (MAT+I}**3_K + (MAT+I)_4

I *(IP-I))

XMAT(NUMBER) = XX

X = XX

END

SUBROUTINE AMATSAV(MN,COEFFI,BMAT_VA,P!,DET)

DIMENSION AMAT(50,50),COEFFI(50,50),BMAT(50

DO 50 I = i,MN

DO 50 J : I,MN

),VA(60)



,k

50

51

AMAT{I,J} = COEFFI(I,J)
DO 5'1 I = I,MN

BMAT(1) = VA(I}
NQ = i

CALL MATINV(AMATtMN,BMAT,NQ.DET,50)
END

150

2

3

4

FUNCTIONZ2ZER(M,N,J,K)

COMMON/ 3 /All40},
I H2(999,15}

FJ = J

FK = K

IF (J-2*(J/2)} 2,2,3

IF (K-2*(K/2)) 4,4,3

Z2ZER = O.
RETURN

A2 (40} ,R(15,15,3) ,HI 13,13,15 ),HI (ii,ii,15 ),

Z2ZER = (AI(M+3)-AI(M+I))*(AI{N+3}-AI(N+i)}W(A2(J+I}-A2(J+3})_

l(A2(K+l)-A2(K+3)}/2.

END

FUNCTION HSMALL(IQ,JQ.XMATRX)

DIMENSION TERM{8).,CO(8}

COMMON/ 1 /FNORM,PI,RZERO

COMMON/2/MW(IOO),NW(IOO},JW(IOO),KW(IOO),IPW(IO0}
NA = NW(IQ)

MA = MW(IQ)

JA = JW(IQ)

KA = KW(IQ)

IPA = IPW(IQ)

NB = NW(JO)

MB = MW(JQ)
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11

14
i

2

3

4

5

6
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7

8

38

JB = 3W(JQ)
KB = KWIJQ)
IPB = IPW(JQ)
CO(1) = NA*NB-KA*KB
CO (2) : IPA*NB + IPB*NA
C0(3) : -NA*NB
CO (4) = KA*KB
CO (5) = IPA_IPB
CO (6) = -(IPAWKB+KA _IPB)
CO (7) =-(C0(6) + C0(2))
C0(8) = C0(7)
N : NA + NB
M = MA + MB
J = JA + .JB
K = KA + KB

IP = IPA + IPB

DO 10 I = 1,8

TERM(1) = O.

DO 11 I = 1,8

IF (CO(1) - 0.)14,11,14

CONTINUE
GO TO 38
GO TO (1,2,3,4,5,6,7,8)_I

TERM(1) = CO(1)_X(M,N,J,K,IP)

GO TO II

TERM(2) = CO(2)_(X(M,N+2,J,K,IP-2)+X(M+I,N-I,J+I,K+I,IP-2))

GO TO ii

TERM(3) =CO(3)_X(M,N-2,J,K,IP)

GO TO ii
TERM(4) = CO(4)_X(M,N,J,K-2,IP)

GO TO ii

TERM(5) = CO(5)*(X(M,N+2,J,K,IP-2)-X(M,N,J,K+2,IP-2))

GOTO 11

TERM(&) = CO(6)w(X(M,N,J,K+2_IP-2)+X(M+I,N+I,J+I,K-I,IP-2))

GO TO 11

TERM(T) = CO(T)_{X(M+I,N+I,J+I,K+I,IP-2)+X(M,N,J,K,IP-2))

GO TO Ii

TERM(8) = CO(8)_(X(M+2,N,J,K,IP-Z)+X(M,N+2,J,K,IP-2)+X(M,N,J+2,K,

IIP-2)+X(M,N,J,K+2,IP-2)-2_X(M,N,J,K,IP-2)-2_X(M+I,N+I,J+I,_+I,

2 IP-2)-X(M,N,J,K,IP))/2.

GO TO 11

SUMM = O.

DO 17 I = 1,8

17 SUMM = SUMM +TERM(I)

HSMALL = (RZERO_2_PI_FNORM/2)*_2_SUMM

END
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FUNCTION ZIZERCM,N,J,K.)
ZIZER : M*(2-2 )
END

FUNCTION ZONECM,N,J,K)

ZONE = ZNEG (M+2,N,J,K) + ZNEG (M,N'J+2,_)+ZNEG (M,N,J,

IK+2) -2.*ZNEG (M,N,J,K) -2.*ZNEG IM+I,N+I,J+I,_+I) -2.*ZINEG(M,

2N,J,K) + ZNEG (M,N+2,J,K)
END

FUNCTION ZIONECM,N,J,K)

ZIONE : ZINEG(M+2,N,J,K) + ZINEG(M,N,J+2,K)+ZINEGCM,N,J,

IK+2) -2.*ZINEG(M,N,J,K) -2.*ZINEGCM+I,N+I,J+I,K+I) -2.*Z2NEG(M,
2N*J,K) + ZINEG(M,N+2,J,K)
END

FUNCTION ZTWO(M,N,J,K)

ZTWO : ZZER (M+2,N,J,K) + ZZER (M,N,J+2,K)+ZZER (M,N,J,

IK+2) -2.*ZZER (M,N,J,K) .2.*ZZER (M+I,N+I,J+I,K+I) -2.*ZIZER(M,
2N,J,K) + ZZER (M,N+2,J,K)

END

FUNCTION ZITWO(M,N,J,K)

ZITWO = ZIZER(M+2,N,J,_) + ZIZER(M,N,J+2,K)+ZIZER(M,N,J,

IK+2) -2.*ZIZER(M,N,J,K) -2.*ZIZER(M+I,N+I,J+I,K+I) -2.*Z2ZER(M,

2N,J*K) + ZIZER(M,N+2,J,_)
END

FUNCTION ZTRE(M,N,J,K)

ZTRE = ZONE (M+2,N,J,K) + ZONE (M,N,J+2,K)+ZONE (M,N,J,

IK+2) -2.*ZONE (M,N,J,_) -2.*ZONE (M+I,N+I,J+I,K+I) -2.*ZIONE(M,
2N_J_) + ZONE (M,N+2,J,K)
END
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ZFOR = ZTWO (M+2,N,J,K) + ZTWO (M,N,J+2,K)+ZTWO (M,N,J,
IK+2) -2._ZTWO (M,N,J,K) -2._ZTWO (M+I,N+I,J+I,K+I) -2._ZITWOCM,
2 N,J,K*) + ZTWO(M,N+2,J,K)

END
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2. Hmethod

a. Program Htauint

Definition of Symbols and Arrays

_(;"+e'"*"_+'3 = _£c {_,_) )
_,(_,-,/,r÷,? : _-:_,_c_,_? - ¢,,Z. _-_ 3

AIC_.,)-:_l_oC_,__(_0-I_3

Subroutines and _uncticns

io Rtaun(jmax,R_nu,wtgaus_ptgaus_maxgaus) determines the

" for _)= iarray R(m,n_ L) i _:z, and 3 and all m __ jmax + nu and

N_ jmax+ Io

2. Aint(imax;A_X) determines the integrals AI for all m z imax .

3o Htau and Htaui2 - see page 127o

Operating Procedure

Besides the input parameters listed on page 127_ this program

requires a value for delta =_ -(II.E-3)o The basic integrals

R_AI_H_HI,H2_ and A2 a._e automatically calculated and punched on

cards along with delta.
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972

973

905
47

99

187

150

187

C

C

C

C

PROGRAM HTAUINT

PROGRAM CALCULATED BASIC INTEGRALS FOR H METHOD

DIMENSION R(12,10,3},H(10,lO,10),H1(8,8,B),H2(6,6,7},AI(40)

DIMENSION WTGAUS(32),PTGAUS(B2),WTLAG(16),PTLAG(16)

FORMAT(6HDELTA=F8.5/13HR(LTAU,J,NU)= 172(SE16.91)13HAl=/8(SEIG.9/

1 )/ 3HH = /200(5E16,9l) 3HHI=,llO2(SEIG,91},2EIG,9,13HH2=
2 /50(5EI6,9/),2EI6,9)

FORMAT(35HTHIS PACKET CONTAINS H,S FOR DELTA= F7.5,)

FORMAT(SE16,9)
FORMAT(3X,//GHDELTA=F7°5)

FORMAT (3X,FS.3)

FORMAT(3X,8HMAXGAUS= 12,THMAXLAG=I2,3E16.9,10{/SE16.9))

FORMAT(9OX,2F7.2)
FORMAT(3X,8HMAXGAUS= 12,THMAXLAG=I21,(4EI7.10) )

READ IN GAUS POINTS AND WEIGHTS

FOR N POINT LEGENDRE INTEGRATION., READ IN N/2 POINTS.

WTLAG REFERS TO LAGUERRE WEIGHTS, AND WTGAU9 REFERS TO LEGENDRE

GAUS WEIGHTS
READ 187 , MAXGAUS,MAXLAG,(PTGAUSII),I=I,MAXGAUS},(WTGAUS(1),I=I,

1MAXGAUS},(PTLAGII),I=I,MAXLAG),(.WTLAG(1),I=I,MAXLAG}
READ 99,DELTA

PRINT 47, DELTA

ALP = 2.*DELTA

CALL RTAUN(8 ,R

CALL RTAUN

CALL RTAUN

CALL AINT

CALLHTAU(1

1MAXLAG)

CALL HTAU1

PRINT 973.

PUNCH

GO TO

END

(8 ,R

{8 ,R

(38,A

0,i0,

,I,WTGAUS,PTGAUS,MAXGAUS)

_2,WTGAUS,PTGAUS,MAXGAUS)

,3,WTGAUS,PTGAUS,MAXGAUS}

1,ALP)

IO,ALP ,1,H,WTGAUS,PTGAUS,MAXGAUS,WTLAG,PTLAG,

2(8,8,8

, DELTA

972,DELTA,R

9999

,6,6,7,H,HI,H2,10,10,10')

,AI,H,HI,H2

SUBROUTINE AINT {LMAX, A, X)

DIMENSION A (40}

A(I} = EXPF(-X)/X

DO2 I = 1, LMAX

El = I

A(I + 1} = A(1} + FIWA(1)/X

END
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C

39

12

13

43

82

81

SUBROUTINE HTAU(MMAX,NMAX,ITAUMX,ALP,NU,H,WTGAUS,PTGAU$,MAXGAUS,

1 WTLAG,PTLAG,MAXLAG )

DIMENSION P(12,4 ),G(32},X(32),DI20,20,3 ) ,WTGAUS(32},PTGAUS{32),

1 WTLAG(16),PTLAG(16)

DIMENSION H(IO,IO,IO}

DIMENSION H(NMAX,MMAX,ITAUMX)

DO 39 K = I,MAXGAUS

G(K) = WTGAUS(K)

X(K) = PTGAUS(F-,)e(1./2.) + 1./2.

G(K + MAXGAUS) = G(K}

X(K + MAXGAUS)= -X(K) + 1.

DO 8 M=I,MMAX

DO 8 N= I,NMAX

DO 8 ITAU = I,ITAUMX

H(M,N,ITAU) = O,

MAXTWO = 2*MAXGAUS

DO 3 I = 1,MAXTWO

T : X(1)

MAX = NMAX

CALL PTN (ITAUMX,NU, P,1./T}

FORMAT (5E16.9 )

Z = 1./T

CALL ETAUN (MAX,D,NU,ALP,I./T,ITAUMX,WTLAG,PTLAG,MAXLAG)

DO 3 ITAU = 1, ITAUMX

GT = ((I.-T*T) _P(ITAU,NU}WP(ITAU,NU))_(-1}

DO 3 N= 1,NMAX

DO 3 M = I,N

H(M,N,ITAU) = H(M,N,ITAU) + GT_D(ITAU,M,NU)WD(ITAU,N,NU)_" G(1)_'l./
12.

DO 81 ITAU = 1,1TAUMX

TAU = ITAU - 1

FNU = NU - 1

KP = 1

LIM1 = TAU - FNU + 1.

LIM 2 = TAU + FNU

DO 82 I = L.IMI_LIM2

KP = KP "w"I

COF = (-1}_(NU-1}WKP

DO 81 N = I,NMAX

DO 81 M = 1,N '

HIM,N,ITAU) = COF_HIMtN,ITAU|

DO 30 ITAU = 1, ITAUMX
DO 30 N = 1,NMAX

DO 30 M = 1,N
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30 H(N,M,ITAU) = H(M,N,ITAU)

END

SUBROUTINE

DIMENSION PI(12,4 ), PZ(12,4

1 WTLAG(16), PTLAG(16)

EAL = EXPF(-ALP)/ALP
DO 39 K = 1,MAXLAG

G(K} = WTLAG(K)
Xl(K)= PTLAG(K)/ALP +i.

39 X2(K) = PTLAG(K)/ALP +Y

DO 38 J= 1,JMAX .

DO 38 LTAU = i, ITAUMX

38 D(LTAU,J,NU) = O.

DO 43 M = 1,MAXLAG
CALL PTN(ITAUMX,NU,P2,X2(M))
CALL PTN(ITAUMX,NU,P1,XI(M))

DO 43 d = I,JMAX

DO 43 LTAU = i, ITAUMX

FNU = NU
U : EXPF(-(Y-I.I*ALP)

GNU = (FNU - 1.) /2.

43 D(LTAU,J,NU) = D(LTAU,J,NU)

i PI(LTAU,NU)*XI(M)W*(J-1) -

2

ETAUN(JMAX,D,NU_ALPtYtITAUMX,WTLAG, PTLAGgMAXLAG)

), G(16)tXI(16), X2(16)t D(20t20.3}t

+ ((XI(M)*XI(M) _I.)**GNU*
EXPF(-(Y-I.)*ALP)*

(X2(M)*X2(M)-I.}**GNU*P2(LTAU,NU}*X2(M)**(J-1))WG(M)WEAL

END

C

C

SUBROUTINE HTAUI2(MMAX,NMAX,IMAX,NMAX2,MMAX2,1MAX2,H,HI,H2,MZERMAX

1 ,NZERMAX,IZERMAX)

DIMENSION H(10,IO,10),Hl(8,8,8),H2(6,6,7)

DIMENSION H(MZERMAXgNZERMAX,IZERMAX),HI(MMAXgNMAXgIMAX),H2(NMAX2,

1 MMAX2,IMAX2)

DO 49 I = I,MMAX
DO 49 J = I,NMAX

DO 49 K = I,IMAX

49 HI(I,J,K) = O.

DO 48 I = 1,NMAX2

DO 48 J = 1,MMAX2

DO 48 K = 1,1MAX2

48 H2(ItJ,K) = O,
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DO 50 I:2,1MAX
DO 50 N = 1,NMAX
DO 50 M=I ,N
T : I-I

50 0 HI(M,N,I) = T*(T+I.)/(2.*T + 1.)*(( T + 1.)*H(MtN,I+I) -
1(2.*T+ I.)* H(M + 1,N+1, I) + TWH(M,N*I - i))

DO 30 ITAU = 21,1MAX
DO 30 N = 1,NMAX
DO 30 M = 1,N

30 HI(N,M,ITAU) = HI(MtN,ITAU)
DO 51 I = 3,1MAX2
DO 51N = I,NMAX2
DO 51 M = 1,N
T = I-1

51 OH2(M,N,I) = (T+2.)*(T+I.)*T*(T-I.)/((2. *T +3.)*
I(2**T + i.)* (2**T-I.))_(T*(2**T -. I.)*((2**T + 3o}/
2 ((T + 1.)*(T + 2.)))*
3HI(M,N,I + 1)- (2.*T + 3.}*(2.*T-1.)* ((2**T+I.)/(T*(T + 1.)))*

4HI(M+I,N+I,I) +(T+I.)*(2**T + 3.)*((2.*T-1.)/({T - 1.)*T))

5 *HI(M, N, I - 1}.)
DO 40 ITAU = 3,1MAX 2

DO 40 N = I,NMAX2

DO 40 M = 1,N

40 H2(N,M,ITAU) = H2(M,N,ITAU)

END

C

C

C

39

38

SUBROUTINE RTAUN(JMAXgR,NU_WTGAUS,PTGAUS,MAXGAUS)

DIMENSION P(.12,4), G(32),X(32)gR(12,10,3) ,WTGAUS(32),PTGAUS(32)

OTHIS SUBROUTINE CALCULATES THE INTEGRAL OFTHE ASSOCIATED LEGENDRE

IPOLYNOMIALS

DO 39 K = 1,MAXGAUS

G(K) = WTGAUS(K)

X(K) = PTGAUSIK)

G(K+MAXGAUS) = G(K)

X(K+MAXGAUS) :-X(K)

LIMNU = JMAX + NU + i

LIM = JMAX + 1

DO B8 J = 1, LIM

DO BB LTAU = i,LIMNU

R(LTAU_J,NU) = O.

MNTWO = 2*MAXGAUS
DO 43 M = 1,MNTWO

CALL PTN (JMAX+NUgNU_P,X(M))
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DO 43 J=I,LIM

JNUONE = J + NU-I

DO /*3 LTAU - NU,JNUONE

FNU z NU
GNU = [FNU - 1.) 12,

43 ORCLTAU,J,NU} = R(LTAU,JtNU} +((Io - X(M)*X(M)}**

I*X (M}**(J-I)*G[M)

END

GNU*P(LTAU,NU)-

C

C

SUBROUTINE PTN(LTAUMX,NU,P,X}

CALCULATES ASSOCIATED LEGENDRE POLYNOMIALS PTAUNU

DIMENSION P(I2,4 )

DO i M= 1,12

DO i N = 1,4

I P(M,N) : O,
P(l,l) = i,

P(2,1} = X
P(2,2) = SQRTF(ABSF(I,-X*X))

P(3,2} = 3,*X'P{2,2}
P(3t3} = 3,*(1. - X'X}
P(_,3} = 5.*P(3_3]*X

FNU '= NU
LIMU = NU + 1
DO 4# LTAU = LIMU_L TAUMX
TAU = LTAU ..........

440P(LTAU + I,NU = I.I(TAU - FNU +I.)*((2.*TAU -I.)*X _

IP(LTAU,NU} - TAU + FNU - 2.)*P{LTAU - I,NU))

END
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b. Program Energy

Definition of Symbols and Arrays

M(i), n(i), j(i), k(i), and ip(i) contain the powers of

th
and r12 for the i term in the basis set H. The array bmat contains

the first order wave function coefficient. Fnorm is proportional to the

integral<_. Enzero =_o' Enone =_i' Etwo =C=_2 and Entre_ 3.

Subroutines and Functions

i. The function X(m,n,j,k, ip,xmatrx) is used to calculate

M°(m, n, j,k,the integrals ip).

2. The functions Zzer, Z2zer, Zneg, Zlneg, and Z2neg are all

part of function X.

3. The function Hsmall calculates Hij-(II.E-4 ) and Ssmall

calculates Sij-(II.E-I9 ).

Operating Procedure

The basis set H is inputed from punched cards and stored in the

arrays m,n,j,k and ip. Delta, R, AI, H, HI, and H2 and finally,

the matrix elements Summit and VA are read from cards. These latter

elements are gotten from program Enermat. The program Energy

subsequently calculates the energy through third order and stores

the matrix elements on tape for use by program Highen.
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302

303

139

201

93

467

198

41
42

301

972

973

99

47

28

29

20

21

22

40
56

67

150

16

4

999

PROGRAM ENERGY

CALCULATES MATRIX ELEMENTS FOR FMETHOD, ALSO CALCULATES ENERGY
THROUGH THIRD ORDER

DIMENSION VCHECK(50),COFNOM(26,26) ,COFRHO(26,26)

DIMENSION BMAT(50),EONE(2),VA(60),PTLAG(16)

DIMENSION GTAU(3),F(15), WTGAUS(16),PTGAUS(16),WTLAG(16)
DIMENSION XMATTWO(520),XMAT(1255)_XMATZER(2600),

1 R(I2'10,3),H(9,9,9),H1(7,7,7),H2(5,5,6),Al(40),A2(40),M(100),N

2(IO0)'J(IOO)'K(IOO),IP(IOO),CA(30),CB(30),SUMMIT(60},COEFFI(5Ot50)
COMMON XMATTWO,XMATtXMATZER, SUMMIT,COEFF1,MN,PI,CA,CB,RZERO, M
COMMON N,J,K,IP,AI,A2,H,HI,H2,R,DELTA

XI(MO,NO,JO,KO,IO,XMATRX) = X(MO,NO+2,JO,KO,IO,XMATRX)-
i X(MO,NO,JO,KO+2,IO,XMATRX)

FORMAT (6HDELTA=FT.5,3X,3HMN=I2,7HCOFNOM=/5OO(5EI6.9/))

FORMAT (6HDELTA=F7.5,3X,3HMN=I2,THCOFRHO=/500(5EI6.9/))
FORMAT(X6HENTRE=,E17.10)

FORMAT(//38HTHE ENERGY DIFFERENCE IS NOW EQUAL TO ,E17.10)
FORMAT(X7HENZERO=E17.10, 6HENONE= E17.10)
FORMAT(3X,/,3(7HVCHECK( I2,2H)=,E17.10,4X))
FORMAT(3X,5E17.10)
FORMATIX6HDELTA=,F7.5,4E16.9,9(/5E16.9))
FORMAT(X6HDELTA=,F7.5 ,7HSUMMIT=3E16.9,9(/5E16,9)}
FORMAT (6HOELTA=F7.5,3X,3HMN=I2,7HCOEFF1=/500(5E16.9/))
FORMAT(6HDELT

i )I 3HH= /145

2 l 30(5E16-9/

FORMAT(35HTHI
FORMAT (3X,F5

FORMAT(3X,//
FORMAT(3X,4E1
FORMAT(1Hl,12

1 7HENZERO:, E
FORMAT(3X,I2/
FORMAT( 13(.5I
FORMAT(X3(THC
FORMAT(5E17.1

A=F8.5113HR(LTAU,J,NU)= 172(5EI6.9/)/3HAI=/8(5EI6.9/

(5EI6.91}4EI6.913HHI=,I6_(5EI6.9/),3EI_.9,/3HH2=
))

S PACKET CONTAINS H,S FOR DELTA= F7.5,)
.3)

6HDELTA=F7.5)

8.10)

X,6HRZERO=, FB.5,4X,6HENONE=,E20.IO,4X,

20. i0, 3X,6HFNORM=, E20.10)

13(511,1X)/13(511,1X))
I,IX})

OEFFI(12,1H,12,2H)=EI7.10))

O)

XMATRX = O.

ALP = 2._DELTA

CALL PCLOCK (TM,ELAPTM}
PRINT 150,TM,ELAPTM

READ 972,DELTA,R,AI,H,HI,H2
DO 999 I = 1,1255

XMAT(I} = 0,

El7.10)FORMAT(X26HTHE DETERMINANT OF COEFFI=

FORMAT(X5HETWO=EI7.10)

FORMAT(9OX,2F7.2)

FORMAT(X4(2HV(,12,2H)= E17.10})

FORMAT(X4(THSUMMIT(-,12,2H)= E17.10))
Pl = 3.141592653589



o

Q-

162

DO 998 I = 1,2600

998 XMATZER(1) = O.

DO 997 I = 1,520

99V XMATTWO(1) = O.

CALL PCLOCK (TM,ELAPTM)

PRINT 150,TM,ELAPTM

19 CONTINUE

C READ WAVE FUNCTION TERMS

READ 20,MN,(M{I),N(1) ,JII}_KII),IPII),I=I,MN)

PRINT20,MN,(M(1),N(1),J(I) ,K(1),IP(1),I=I,MN)

DO 300 I = I_.MN

M(I+MN) = N(I}

N(I + MN) = M(1)

J(I + MN) = K(1)

K{I + MN) = JCI)

300 IP(I + MN) = IP(1)

1 I = I,MN

I L = !,MN

DO 88

DO 88

W1 =

W2 =
W3 =

W4 =

Si =

62 =

$3 =

$4 =

HSMALL

HSMALL

HSMALL

HSMALL

SSMALL

SSMALL

SSMALL

SSMALL

I ,L ,XMATRX )

i+MN,L _XMATRX )

I ,L+MN ,XMATRX )

i +MN,L+MN ,XMATRX )

I,L,XMATRX)

I+MN,L ,XMATRX )

I ,L+MN,XMATRX)

I+MN,L+MN ,XMATRX)

CCEFFI_I,L) = WI+W2+W3+W4-ENZERO_(SI+S2+S3+S4)

881 COEFFI(L,I) = COEFFI(I,L)

PUNCH 301, DELTA,NN,((COEFFi(I,JO),I=I,MN),JO=I,MN)

C READ PUNCHED CARDS CONTAINING THE VMATRX ELEMENTS

READ 42,DELTA,(SUMMITII),I=I,MN)

READ 41, DELTA,(VAII),I=I,MN)

CALL PCLOCK (TM,ELAPTM)

PRINT 150,TM,ELAPTM

913 CONTINUE

CALL AMATSAV(MN,COEFF1,BMAT,VA,PI,DET)

SUMI = O.

SUM 2 = O.

DO 66 I = I,MN

SUMI = SUM1 - BMAT(1) _ VA(1)

DO 66 JO = I,MN

66. SUM2 = SUM2 + BMAT(I)*BMATIJO)*COEFFI(I,JO)

ETWO =(SUMZ/PI +4,*PI*PI*SUM2)/FNORM

SUM2 = O.

SUM1 = 0.

CALL PCLOCK (TM,ELAPTM)

PRINT I50,TM,ELAPTM

MNTWO = 2*MN

DO 9 JQ = 1, MNTWO
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180

181

182
183

184

185

11

DO 9 IQ = I,MNTWO

JUCK = J(IO) + J(JQ)

KUCK = K(IQ) + K(JQ)

MUCK = M(IQ} + M(JQ)

NUCK = N{IQ) + N{JQ)
IPUCK = IPCIQ) +IP{JQ}

PORK = XI(MUCK,NUCK,JUC_,&UC&,iPUC_ - 1, XMATR×)

FORK = XI(MUCK,NUCK,JUCK,KUCK,IPUCK, XMATRX)
COFNOM(IQ,JQ) = FORK

COFRHOCIQ,JQ) = PORK

IF(IQ -MN) 180,180,181

IO = IQ

GO TO 182

IO = IQ-MN

IF(JQ-MN)I83,183,184

JO : JQ
GO TO 185

JO = JQ-MN

CONTINUE

SUMI = SUMI+BMAT.(IO)*BMAT(JO)*(2./RZEROwPORK - ENONEeFORK )
CONTINUE

DO 11 I = 1,MN

SUM2 = SUM2 + BMAT(1)_SUMMIT(1)

CONTINUE

ENTRE = 4.wPI_PI_RZERO*W6 /(64._FNORM}w(SUM1 - 2.WETWOWSUM2}

PRINT 93, ENZERO,ENONE

PRINT 67, ETWO

PRINT 139 ,ENTRE

DIFF = -1.88873 - {ENZERO + ENONE + ETWO + ENTRE)

PRINT 201, DIFF
PUNCH 302, DELTA,MN,((COFNOM(I,JO),I=I,MN),JO=I,MN)

PUNCH 303, DELTA,MN,((COFRHO(I,JO),I=I,MN),JO=I,MN)

600 CALL PCLOCK (TM,ELAPTM)

PRINT 150,TM,ELAPTM
CONTINUE

CONTINUE

GO TO I9

END

50

SUBROUTINE AMATSAV(MN,._,rn=::I,BMAT,VA,PI,DET},-
DIMENSION AMAT(50,50),COEFFI(50,50),BMAT(50 ),VA(60)

DO 50 I = I,MN
DO 50 J = 1,MN

AMAT(I,J} = COEFFI(I,J)
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5i

DO 51 I = I,MN

BMAT(1) = VA(1) /(8.*PI*'3)
NQ = i

CALL MATINV(AMAT,MN,BMAT,NQ,DET,50)
END

38

41

39

40
43

42

60

74

75

76

77

FUNCTION X(M,N,J,K,IP,XMATRX)

DIMENSION XMATTWO(520),XMAT(1255),XMATZER(2600),

I R(12,10,3),HI9,9,9),HI(7,7,7),H2(5,5,6),AI(40),A2(40),W(IOO),U
2(IO0),V(IOO),S(IOO),IQ(IOO),CA(30),CB(30),SUMMIT(60),COEFFI(50,50)

COMMON XMATTWO,XMAT,XMATZER, SUMMIT,COEFFi,MN,PI,CA,CB,RZERO, W

COMMON S,U,V,IQ,AI,A2,H,HI,H2,R,DELTA

ZIZER(M,N,J,K) = O-

ZONE (M,N,J,K) = ZNEG (M+2,N,J,K) + ZNEG (M,N,J+2,K)+ZNEG (M,N,J,

IK+2) -2.*ZNEG (M,N,J,K) -2.*ZNEG (M+I,N+I,J+I,K+I) -2o*ZINEG(M,
2N,J,K) + ZNEG (M,N+2,J,K)

ZIONE(M,N,J,K) = ZINEG(M+2,N,J,K) + ZINEGIM,N,J+2,_)+ZINEG(M,N,J,

IK+2) -2°*ZINEG(M,N,J,K) -2°*ZINEGIM+I,N+I,J+I,K+I) -2.*Z2NEG(M,

2N,J,K) + ZINEG(M,N+2,J,K)

ZTWO (M,N,J,K) = ZZER (M+2,N,J,K) + ZZER (M,N,J+2,K)+ZZER (M,N,J,

IK+2) -2.*ZZER (M,N,J,K) -2°*ZZER (M+I,N+I,J+I,K÷I) -2.*ZIZER(M,

2N,J,K) + ZZER (M,N+2,J,K)

ZITWO(M,N,J,K) = ZIZER(M+2,N,J,_) + ZIZER(M,N,J+2,K)+ZIZER(M,N,j,

IK+2) -2.*ZIZER(M,N,J,K) -2°*ZIZER(M+I,N+I,J+I,K+I) -2.*Z2ZER(M,

2N,J,K) + ZIZER(M,N+2,J,K)

ZTRE (M,N,J,K) = ZONE (M+2,N,J,K) + ZONE (M,N,J+2,K)+ZONE (M,N,J,

IK+2) -2.*ZONE (M,N,J,K) -2o*ZONE (M+I,N+I,J+I,_+I) -2.*ZIONE(M,
2N,J,K) + ZONE (M,N+2,J,K)

ZFOR (M,N,J,K) : ZTWO (M+2,N,J,K) + ZTWO (M,N,J+2,K)+ZTWO (M,N,J,

IK+2) -2.*ZTWO (M,N,J,K) -2°*ZTWO (M+I,N+I,J+I,K+I) -2.*ZITWO(M,
2 N,J,K) + ZTWO(M,N+2,J,K)

IF( J-2*(J/2 ))38,39,38

IF (K-2*(K/2) )40,41,40

X = O.

RETURN

IF(K-2*(K/2) )41,40,4i
IF( IP)42,43,42

IF(J-2*IJ/2))41,42,4I

IF(IP) 60,60,6i

IF(M-5) 74,74,3

IFCN-5)75,75,3

IF(J-5) 76,76,3

IF(K-5) 77,77,3

Y : XMATZER(M+I+6*N+36*J+216*K+I296*(IP÷I))
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46
47

IF(Y) 48,79,48

79 COUNT = O.

GO TO 2

61 IF(IP-2) 62,62,63

62 IF(M-4)44,44,3

44 IF(N-4)45,45,3

IF(J-4) 46,4693

IF (K-4) 47,47,3

Y = XMAT(M+I+5*N+25*J+I25*K+625*(IP-I))
IF(Y) 48,49,48

48 X = Y
RETURN

49 COUNT = i.

60 TO 2

63 IF(M-3)84,84,3

84 IF(N-3)85,85,3

85 IF(J-3)86,86,3

86 IF(K-3)87,87,3

87 Y = XMATTWO (M+I+4*N+I6*J+64*K+256*(IP-3))
IF(Y) 48,89,48

89 COUNT = 2.

GO TO 2
3 CONTINUE

PRINT I06,M,N,J,K,IP

106 FORMAT (23HOVERFLOW IN FUNCTION X 3X,5(12,2X})

COUNT = 3,
2 IF(IP}I59,160,161

160 XW= ZZER(M+2,N,J,K) - ZZER(M,N,J+2,K)

GO TO 50
I59 XW= ZNEG(M+2,N,J,K) - ZNEG(M,N,J+2,K}

GO TO 50

161 IF(IP-2)I62,163,164

162 XW= ZONE(M+2,N,J,K } - ZONE(M,N,J+2,K)

GO TO 50
163 XW= ZTWO(M+2,N,J,K) - ZTWO(M,N,J+2,K]

GO TO 50

164 IF(IP-4) 165,166,166

165 XW= ZTRE(M+2,N,J,K) - ZTRE(M,N,J+2,K)

GO TO 50

i66 XW= ZFOR(M+2,N,J,K) - ZFOR(M,N,J+2,K)
50 IF(COUNT - i.)53,52,54

53 NUMBER = M+I+6*N+36*J+216*K+I296*(IP+I}

XMATZER(NUMBER} = XW

GO TO 5I

54 IF(COUNT - 2.) 55,55,51
55 NUMBER = M+I+4WN+I6*J+64*K+256*(IP-3)

XMATTWO(NUMBER} = XW
GO TO 51

52 NUMBER = M+l+5*N÷25*J+I25*K+625*(IP-I)

165
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51
xMAT(NUMBER) = XW
X = XW

END

2
3

4

FUNCTION ZZER(M,N,J,K)
DIMENSION XMATTWO(520),XMAT(1255)tXMATZER(2600),

I R(12,10,3),H(9,9,g},HI(7,7,7),H2(5,5,6)IA1(40),A2(40},W(100),U
2(IO0),V(IOO),S(IOO),IP(IOO),CA(30),CB(30),SUMMIT(60),COEFFI(50,50)

COMMONXMATTWO,XMAT,XMATZER, SUMMIT,COEFFI_MN,PI,CA,CB,RZERO, W
COMMONS,U_V,IP_AI,A_,HgHI,H29R,DELTA

L

IF (J-2*(J/2)) 2t2,3

IF (K-2*(K/2)) 4,4,3

ZZER : O.

RETURN

ZZER : 4.*AI(M+I)*AI(N+I)/((FLOATF(J) + 1.)*¢FLOATF(K) + 1.))
END

C

2

3

4

FUNCTIONZ2ZERCM,N,J,K)

DIMENSION XMATTWO(520),XMAT(1255),XMATZER(2600),

i R(12_IO_S)gH(g,9_9),H1(?_7_7)_H2(5,St6),Al(40)_A2(40)tW(1.00),U

2(IO0},V(IOO),S(IOO),IP(IOO)_CA(30)_CB(30),SUMMIT(60),COEFFI(50_50)

COMMON XMATTWO,XMAT,XMATZER_ SUMMIT,COEFF1,MN,PI,CA,CB,RZERO, W

COMMON S,UtV,IP,A1,AZ,H,HI,H2,R,DELTA

FJ = J
FK = K
IF {J-2_(J/2)) 2,2,3
IF (K-2_(K/2)) 4,4,3
Z2ZER = O.
RETURN.
Z = 8.*(AI(M+ 3) -AI(M+I)I*(AI(N+3I-AI(N+I))/((FJ+I.)*(FJ+3.)W(FK

1 + 1.)*(FK+3.))

Z2ZER : Z

END

FUNCTION ZNEG(M,N,J,K)

DIMENSION XMATTWO(520),XMAT(1255),XMATZER(2600),

1 RI12_lO,3)_H(9,9,9},H1(7_7,7),H2{S,5_6)tA1(40),A2(40),W(lOO),U

2(IOO),V(IOO),S(IOO),IP(IOO),CA(SO)tCBIBO),SUMMIT(60),COEFFI(50,50)

COMMON XMATTWO_XNAT,XMATZER, SUMMIT,COEFFI,MN,PI_CA,CB_RZERO, W
COMMON S,U_V,IP,AI_A2_H,HI_H2,R,DELTA -

IF(J-2*(J/2))38_39,38
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38
41

39
40

97

98
8

6
,7

5
9
99

IF (K-2*{K/2) )40,41,40

ZNEG = O.

RETURN
IF (K-2"W'(K/2) }41,40,41

CONTINUE ........

IF(J-K) 97,97,98
LIM = J +i

GO TO 99

LIM = K + 1

FORMAT(17HOVERLOAD IN

IF (.LIM-9 }6,6,5
IF(M-8)7,7,5

.IF(N-8)9,9,5

PRINT 8,M,N,LIM

CONTINUE

SUMM = O.

DO 49 LTAU = 1,LIM

T = LTAU -I

49 SUMM.= SUMM + (2.*T +

1N+l, LTAU}

ZNEG = SUMM

END

ZNEG ,2HM=I2, 2HN=I2,4HLIM=I2)

I.)*R(LTAU,J+I,1)WR(LTAU, K +
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I,I)*H{M+I,

C

38

41

39
40

27.

28

8

6
7

5

9

FUNCTIONZINEG(M,N,J,K}

DIMENSION XMATTWO(520),XMAT(1255},XMATZER(2600),

1 R(12,10,B),H(9,9,9),HI(?,7,7),H2(5,5,6),A1(40),A2{40},W(IOO),U

2{IO0),V(IOO),S(IOO),IP(IOO),CA(30},CB(30),SUMMIT(60),COEFFI[SO,50)

COMMON XMATTWO,XMAT,XMATZER, SUMMIT,COEFFI,MN,PI,CA,CB,RZERO, W

COMMON S,U,V,IP,A1,A2,H,H1,H2,R,DELTA

IF(J-2*(J/2))38,39,38

IF(K-2*(K/2))40,41,40

ZINEG = O.

RETURN

IF(K-2*(K/2))41,40,41

CONTINUE ,,
IF (JIK) 27,27,28

LIM = J + 2

GO TO 29

LIM = K + 2

FORMAT(17HOVERLOAD IN

IF(LIM-7)6,6,5

IF(M-6)7,7,5

IF(N-6)9,9,5
PRINT 8,M,N,LIM

CONTINUE

ZINEG ,2HM= 12,2HN=I2,4HLIM=I2).
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29 SUNM = 0.

DO 170 LTAU = 2,LIM

T = LTAU - I
170 SUMM = SUMM - I./(T * (T + i.))* R(LTAU , J + 1,2)*R(LTAU, K+ i,

i 2)* (2.*T + I.)/(T*(T + I.)}*HI(M + I, N -I-i, LTAU)

ZINEG = SUMM

END

C

FUNCTIONZ2NEG(M,N,J,K)

DIMENSION XMATTWO(520},XMAT(1255),XMATZER(2600),

I R(12,10,3),H(9,9,9),Hl(7,7,7),H2(5,5,6),Al(40),A2(40),W(100),U
2(100),V(100),S(100),IP(IO0),CA(30),CB(30),SUMNIT(60},COEFFI(50,50)
COMMON XMATTWO,XMAT,XNATZER, SUMMIT,COEFFi,MN,PI,CA,CB,RZERO, W.
COMMON S,U,V,IP,A1,A2,H,HI,H2,R,DELTA

8 FORMAT(ITHOVERLOAD IN Z2NEG ,2HM:I2,2HN=I2,4HLIM=I2)

IF(J-2*(J/2))38,39,38

38 IF(K-2*(K/2))40,41,40

4i Z2NEG = 0.

RETURN

IF(K-2*(K/2))41_40,41

CONTINUE

IF (J - K) 17,17,18
17 LIM = J + 3

GO T 0 19

18 LIM = K + 3

19 IF(LIM-6)6,6,5

6 IF(M-4)7,7,5
7 IF(N-4)9,9,5

5 PRINT 8,M,N,LIM

LIM = 6

9 CONTINUE

SUMMI= 0.

SUMM2 = O.

DO i71 LTAU = 3,LIM
T -= LTAU - I

iTi SUMM i = SUNNI + (I./((2._T + 3.)*(2.*T - i-)* (T + 2.)_(T + i.)

l *T*(T - I.)))_R(LTAU , J + i, 3)*R(LTAU, K + i, 3)*((2.*T + 3.)
2 *(2.*T + I.)*(2.*T - I.)/{(T + 2.)*(T + I.)*T*(T - i.))) * H2

3 (M + I,N+I,LTAU)

DO 172 LTAU = I, LIM

T = LTAU - 1

172 SUMM 2 = SUMM2 +" (2._T + 1.)*(R(LTALL, J_+_I!,I) -R(LTAU ,J + 3,1))
1" ( R(LTAU,K + 1,1} -R(LTAU, K+ 3,1))_--_:qH_(M÷3_N + 3,LTAU)

39

40



m
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2 -H(M + 3, N + 1,LTAU) -
3 + H(M+I,N+I,LTAU))

Z = I./2.*($UMMI + SUMM2)

ZZNEG = Z

RETURN

END

H(M+I,N + 3,LTAU)

FUNCTION SSMALL (IQ,JQ,XMATRX)

DIMENSION XMATTWO(520),XMAT(1255),XMATZER(2600},

I R(12,10,3),H(9,9,9),HI(7,7,7),H2(5,5,6),AI(40),A2(40),M(IOO),N

2(100),J(100),KI100),IP(100),CA(30),CBI30),SUMMIT(60),COEFFI(50,50)
COMMON XMATTWO,XMAT,XMATZER, SUMMIT,COEFFI,MN,PI,CA,CB,RZERO, M
COMMON N,J,K,IP,AI,A2,H,HI,H2,R,DELTA

SSMALL = 1./64.*RZERO**6*(X(M(IQ)+M(J_),N(IQ)+N(JQ)+2,J(IQ)+J(JQ),
1K(IQ)+K(JQ),IPIIQ)+IP(JQ),XMATRX) - ×(M(IQ)+M(JQ),N(IQ)÷N(JQ),
2 J(IQ)+J(JQ),K(IQ)+K(JQ)+2,IP(IQ)+IP(JQ) ,XMATRX) )

END

C
FUNCTION HSMALL(IQ,JQ,XMATRX)

DIMENSION TERM(8) ,C0(8)

DIMENSION XMATTWO(520),XMAT(I255),XMATZER(2600),

I R(12,10,3),H(9,9,9),HI(7,7,7),H2(5,5,6),AI(40),A2(40),MW(IO0),

2NW(IOO),JW(IOO),KW(IOO),IPW(IOO)*CA(30),CB(30),SUMMIT(60),COEFFI

3(50,50}
COMMON XMATTWO,XMAT,XMATZER, SUMMIT,COEFF1,MN,PI,CA,CB,RZERO, MW
COMMON NW,JW,KW,IPW,A1,A2,H,H1,H2,R,DELTA
NA = NW(IQ)

MA : MW(IQ)

JA = JW(IQ)

KA = KW(IQ)

IPA = IPW(IQ}

NB = NW(JQ)

MB = MW(JQ)

JB = JW(JQ)

KB = KW(JQ}

IPB : TD,.,(Jn_

CO(1) = ((NA
i (IPA-IPB)*(NA-NB-KA+KB))

C0(2) = (8.*RZERO-4.*DELTA)

C0(3) = - ((NA -NB)*(NA -NB)

CO(4}= ((KA -KB)*(KA-KB}-(KA

-NB)*(NA-NB)- (KA-KB)*(F.A-KB)+(J_A_-......'_D}-(_'^-,-_'m)4.,.,_T,.,.,.

-(NA +NB))

+KB))
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10

11
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I

2

3

4

5

6

7

8

38

17

C0(5) =((IPA-IPB)*(IPA-IPB)+IPA +IPB

C0(6) = -(IPA-IPB)_(NA-NB-(KA-KB))

C0(7) = 2 *(IPA -IPS)*(NA-NB)

C0(8)= -2 *(IPA-IPB)*(KA-KB)
N = NA + NB

M = MA + MB

J = JA + JS
K = KA + KB
IP = IPA + IPB

DO 10 I = 1,8

TERM(1) = O.

DO 11 I = 1,8

IF (CO(I) - 0.)14,11,14

CONTINUE

GO TO 38

+ (IPA -IPB)*(NA -NB +KA-K8))

GO TO (I,2,3,4,5,6,7,8),I

TERM(I) =CO(1)*X(M,N,J,K, IP,XMATRX)

GO TO 11
TERM(2) =C0(2) *X(M,N+I,J,K,IP,XMATRX)

GO TO 11
TERM(3) = C0(3) *X(M,N-2,J,K,IP,XMATRX)

GO TO 11

TERM(4) = CO(4}*X(M,N,J,K-2,1P,XMATRX)
GO TO ii

TERM(5)=CO(5)*(X(M,N+2,J,K,IP-2,XMATRX)-X(M,N,J,K+2,1P-2,XMATRX))

GO TO 11

TERM(6)=CO(6)*(X(M+2,N,J,K,IP-2,XMATRX)+X(M,N,J+2,K,IP-2,XMATRX))

GO TO 11

TERM(7)=CO(7)*X(M+I,N-1,J+I,K+I,IP-2,XMATRX)

GO TO Ii

TERM(8) = CO(8)*X{M+I,N+I,J+I,K-I,IP-Z,XMATRX)

GO TO Ii

SUMM : O.
DO 17 I = 1,8

SUMM = SUMM +TERM(1)

HSMALL =-(RZERO**4*SUMM/64.)

END

FINIS

-EXECUTE.
( *P

* P*X-O
( **
( *7
( (7

m

m))*N

((X-X X=X:X9X-O

))*N

**)V

7

U90 0 0 X*49-5X V577W--5((P T-*(SS--(((( */
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c. Program Enermat

Operating Procedure

The program requires the input of the basis set H from punched

cards. It also requires the parameter delta. The program then calculates

the matrix elements VA and Summit and outputs them on punched cards for

use by program Energy.



a

.Q

93

41

42
2B

441

442

99
47

29

917

20

21

22

40
56

67

150

16

4

C

172

C

C

PROGRAM ENERMAT

CALCULATES THE V MATRIX ELEMENTS FOR H METHOD

DIMENSION GTAU(3),F(IS),WTGAUS(I6),PTGAUS(I6),WTLAG(I6)gPTLAG(Ib)

DIMENSION VA(60) ,SUMMIT(60)

DIMENSION FZ(20),BZ(20),RTAUV(15,15,2),HPHI(B,B915),HPHIA(B98915)p

IVXMAT(51QO),M (IO0},N (IO0},J {IO0),K (IO0),IP (I00)
COMMON VXMAT,RTAUV,HPHI,HPHIA,FZ_BZ,M,NgJgK_IP

VXI(M,N,J,K,IP) = VX(M,N+2,J,K,IP) - VX(MgN,J_K+291P)

FORMAT(X7HENZERO=E17.IO, 6HENONE = El7.10)

FORMAT(X6HDELTA=,F7.5,4EI6.9,9(/SEI6.9))

FORMAT(X6HDELTA=,FT.5 ,7HSUMMIT=3EI6.9,9(/SEI6.9))
FORMAT (SEIT.IO)

FORMAT(BX,6HDELTA= FS.2,3X_I2,/94X922HTHE V,S AND SUMMIT ARE/

I (4012})

FORMAT(4E20.II)

FORMAT (3X,F5.3)

FORMAT(3X,//6HDELTA=F7.5
FORMAT(IHI,//2OX,6HDELTA=

FORMAT(52HMATFCOF,RZERO,G

I 3XgI2,2XF5.3,3FT.4

FORMATI3X,I2/II3ISII,IX)!

FORMAT( 13(511,1.X})
FORMAT(XB(THCOEFFI(I2,1H,

FORMAT(SE17,10}
FORMAT(X26HTHE DETERMINAN

FORMAT(X5HETWO=E17.10}

FORMAT(9OX,2F7.2}

)

FS.3//,2OX,3HMN=,I2,//,II3(IX,51I)})

TAU,SIGMAgDELTAIgANDF ARE AS FOLLOWS

,2F8.5/3X,2(6F9.6/))
)

12,2H}=EI7.10,2X}}

T OF COEFFI: E17,I0}

PTGAUS(OI) = - .9894009B50

PTGAUS(02}= T .9445750231
PTGAUS(OB} = - .8656312024

PTGAUS(04)= -.7554044084

PTGAUS(05)= - ,6178762444

PTGAUS(06)= -.4580167777

PTGAUS(O7}= - .2816035508

PTGAUS(08)= - .0950125098
MAXGAUS = 8

THE LAGUERRE GAUSS WEIGHTS ARE

FORMAT(X4(2HV(,I2,2H}= El7.10})

FORMAT( 4(7HSUMMITI,12,2H)= EiT,IO,ZX})

THE LEGENDRE GAUSS WEIGHTS ARE

WTGAUS(OI) = .0271524594

WTGAUS(02} = . .0622535239

WTGAUS(O3} = .0951585117

WTGAUS(04) = .1246289713

WTGAUS(05} = .I495959888

WTGAUS(06)= .I691565194

WTGAUS(07)= .182603_i50

WTGAUS(08)= .i894506105

AND THE CORRESPONDING POINTS ARE



o

4

C

WTLAG (Ol) = .3691885893E+0
WTLAG{02) = .4187867808E+0
WTLAG (03)= .17579498664E+0
WTLAG (04) = .3334349226E-1
WTLAG (05} = .2794536235E-2
WTLAG(06) = ,9076508773E-_
WTLAG (07} = .84857a6716E-6

WTLAG (08) = .I048001!75E-8
AND THE CORRESPONDING POINTS

PTLAG (01) = .1702796323E+0
PTLAG (02} = ,9037017768E+0
PTLAG (03) = .2251086630E+1
PTLAG (04) = .4266700170E+1
PTLAG (05} = .7045905402E+1
PTLAG (06) = .1075851601E+2
PTLAG (07) = .1574067B64E+2
PTLAG (08) = .2286313173E+2
MAXLAG = 8
PTLAG (01) = .87649410a8E-1
PTLAG (02) = .4626963289E+0
PTLAG (03) = .1141057775E+1
PTLAG (04) = .2129283645E+I
PTLAG (05) = .3437086634E+1
PTLAG (06) = .5078018615E+1
PTLAG (07) = .7070338535E+1
PTLAG (08) = .9438314336E+1
PTLAG (09) = .1221422337E+2
PTLAG (10) = .1544152737E+2
PTLAG (ii) = ,1918015686E+2

PTLAG (12) = .2351590569E+2

PTLAG (i3) = .2857872974E+2

PTLAG (I4) = .3458339870E+2

PTLAG (i5) = .4194045264E+2

PTLAG (16) = .5170116034E+2

WTLAG (Oi) = .2061517150E+0

WTLAG (02) = ,3310578550E+O
WTLAG (03) = .2657957776E+0

WTLAG (04} = .1362969343E+0
WTLAG (05) = .4732892869E-1
WTLAG (06) = .I129990008E-1
WTLAG (07) = ,1849070943E-2
WTLAG (08) = .2042719153E-3

WTLAG 109) = ,1484458687E-4

WTLAG {i0) = .6828319331E-6

WTLAG (II) = .I88102484IE-7

WTLAG {12) : .2862350243E-9

WTLAG (13) = .2127079033, .1

WTL ^r-,,,,(14} = .6_oTo67nn3E-14__

WTLAG (15) = .5050473700E-17

ARE
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WTLAG (16) : .4161462370E-21
MAXLAG : 16

ENONE = .7BOBB16326

ENZERO = -2.56B538484

RZERO - 1.4

PI = 3.141592653589

FNORM = .5806108281

MAXFCOF : ?

C KMAX EQUALS THE NUMBER OF F,S MINUS THREE

KMAX = MAXFCOF - 3

C MAXMUM EOUAL5 THE TOTAL NUMBER OF TAU ,SDESIRED

C LMAX INDICATES THE POWER OF MU DESIRED

LMAX = 8

MMAX = 8
NMAX = 8
MAXMUM = 15
DELTA1 = 1.12186623

C ZEROTH ORDER WAVE FUNCTION COEFFICIENTS
SIGMA = .24?9206
F(1) = 1.0769

F(3) : 0.15634

F(5) = 0.003407

F(7) : 0,000031

GTAU(1) = 1.

GTAU(2) = 0.0105

GTAU (_) : 0.0004

READ F, GTAU

CALL PCLOCK (TM,ELAPTM)

PRINT 150,TM,ELAPTM

ALP2 = 2.*DELTA1

READ 99,DELTA
19 CONTINUE

READ 20,MN,(M(I),N(1),J(1),K(1),IP(1),I=I,MN}

DO 300 I = 1,MN

M(I+MN) = N(I)

N(I + MN) = M(I)
J(I + MN) = K(1)

K(I + MN) = J(1)

300 IP(I + MN) = IP(1)
XMATRX = O.

C

C ALP GOES INTO 15T ORDER W.F° ALP1 IS USED TO CALC V,S ALP2 TO CALC EZE_
ALP : 2._DELTA

ALP1 = DELTA1 + DELTA

CALL PCLOCK (TM,ELAPTM)

PRINT 150,TM,ELAPTM

CALL QUADLEG{KMAX+3,F,BZ,IO,WTGAUS,PTGAUSoMAXGAUS)

CALL QUADLAG(I.,ALPI,IO_I6,FUNCT,FZ,GTAU,SIGMAgWTLAG,PTLAGtMAXLAG) i
CALL PCLOCK (TMtELAPTM)

PRINT 150,TM,ELAPTM
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CALL RTAU(KMAX,F,RTAUV,LMAX,MAXMUM,WTGAUS�PTGAUStMAXGAUS)
CALL PCLOCK (TM,ELAPTM)

PRINT 150,TM,ELAPTM

CALL TROT (NMAX.MMAX,MAXMUM, ALPI_I�HPHI 9SIGMA,GTAUtFINT19FINT2_
IWTGAUStPTGAUS,MAXGAUS,WTLAG,PTLAGoMAXLAG)
CALL PCLOCK (TM,ELAPTM)

PRINT 150,TM,ELAPTM

DO 990 I = 1,5190
990 VXMAT(1) = O.

LMAXXX = NMAX - 2

MXXMUM = MAXMUM - i

DO 73 I : 2,MXXMUM

DO 73 NO = I,LMAXXX

DO 73 MO = I,NO

T=I-I

HPHIA(MO,NO,I) = T_(T+I.)/(2._T+I.)_((T+I,)*HPHI(MO,N09I+I)-

I (2._T+I.)WHPHI(MO+I,NO+I,I) + T_HPHI(MO,NO,I-I))

73 HPHIA(NO,MO,I) = HPHIA(MO,NO,I)

CALL PCLOCK (TM,ELAPTM)

PRINT 150,TM,ELAPTM

DO 30 I = 1,MN

30 SUMMIT(1) = O.

DO 60 I = 1,MN

VYA = VXl(M(1), N(1), J(I), K(I), IP(I)-I)

VYB = VXl(M(1),N(I)'J(I),K(I),IP(I))

VYC = VXl( M(I+MN),N(I+MN),J(I+MN),K(I+MN),IP(I+MN)-I)

VYD = VXl(M(I+MN),N(I+MN),J(I+MN),K(I+MN),IP(I+MN))
SUMMIT(I) = SUMMIT(1) + VYB + VYD

VA(1) = 2./RZERO_(VYA + VYC) - ENONEw(VYB + VYD)

60 CONTINUE

DO 8 I = I,MN

8 VA(1) = -8.*PI*_3*RZERO**6/64.*VA(1)

PRINT 16, (I,VA(I),I = 1,MN)

PRINT 4, (I,SUMMIT(1), I = 1,MN)

PUNCH 441,DELTA,MN,(M(1),N(I),J(I),K(1).IP(1)�I=l,MN)

PUNCH 4429(VA(I),I=1_MN),(SUMMIT(I)_I=19MN),ENZEROtENONE
800 CALL PCLOCK (TM,ELAPTM)

PRINT 150,TM,ELAPTM

END

SUBROUTINE TROT(MMAX,NMAX,ITAUMX,ALP,NU,H,SIGMA, GTAU_FINTI�FINT29
IWTGAUS,PTGAUS,MAXPT ,WTLAG,PTLAG,MAXLAG)

DIMENSION G(32),X(32),WTGAUS(I6),PTGAUS(I6),WTLAG(16)_PTLAG(16)

DIMENSION D(15,I2,2)tP(30,2},H(8,8_IS),GTAU(3)

DO 39 K = I,MAXPT

G(K) = WTGAUS(K)

X(K) = PTGAUS(K)_(I./2.) + i./2.
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G(K+MAXPT ) = G(K)
X{K+MAXPT} = -X(K) + I.

DO 8 M = 1,8

DO 8 N = 1,8

DO 8 ITAU = 1,6
H(M,NtlTAU) = 0.

MAXPTS = 2*MAXPT
DO 3 I = 19MAXPTS
T = X(1)

IF (NMAX-MMAX} 11,11,12

MAX = MMAX
GO TO 13

MAX = NMAX

CALL RTN (ITAUMXgNU, P_I./T}
Z = 1./T

CALL VTAUN (MAX,D_NU,ALP,1,/T,ITAUMX,GTAU,SIGMA,FINT1,FINT2,
1 WTLAG,PTLAGtMAXLAG}
DO 3 ITAU = 1, ITAUMX

GT = ((1.-T_T) _P(ITAU,NU}_P(ITAU,NU))W_(-1)

CONTINUE

DO 3 N= I,NMAX
DO 3 M = I,N

H(M,N,ITAU) = H(M,N,ITAU) + GT_D(ITAU,M,NU)_D(ITAU,N,NU)_ G(I}_I./
I 21 t

DO 81 ITAU = 1,ITAUMX

TAU = ITAU - 1

FNU = NU - 1
KP = 1

LIM1 = TAU - FNU + 1.

LIM 2 = TAU + FNU

DO 82 I = LIM1,LIM2

KP = KP_I

COF = (-I)_(Nu-1)_KP
DO 81 N = I,NMAX

DO 81 M = 1,N

H{M,N,ITAU} = COF_H(MtN,ITAU}

DO 30 ITAU = I_ITAUMX

DO 30 N = 1,NMAX

DO 30 M = 1,N

H(N,M,iTAU) = H(M,N,ITAU)

END

d

V

C

SUBROUTINE VTAUN(JNAX,D,NU,ALP,Y,ITAUHX, GTAU,SIGMA,FINTI,FINT2,
I WTLAG_PTLAG,MAXLAG)

DIMENSION G(I6),XI(16),X2(16),WTLAG(I6), PTLAG(I6)

DIMENSION D(IS,I2,2),PI(30,2) ,P2(30,2), GTAU(3)
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GNO(W,Z)= Z_SIGMA*(GTAU(I} + GTAU(2)wW + GTAU(3)*W_W)
EAL = EXPF(-ALP)/ALP

DO 39 K = .1,MAXLAG

G(K) = WTLAG(K)-

Xl(K)= PTLAG(K)/ALP +1.

39 X2(K) = PTLAG(K)/ALP +Y

DO 38 J= 1,JMAX

DO 38 LTAU = 1, ITAUMX

38 D(LTAU,J,NU) = O.
DO 43 M = 1,MAXLAG

CALL RTN(ITAUMX,NU,P2,X2(M))

CALL RTN(ITAUMX,NU,PI,Xl(M))

GN1 = GNO((XI(M)-I.)/(Xl(M)+I.),Xl(M)+I.)

GN2 = GNO((X2(M)-i.)/(X2(M)+I.)gX2(M)+I,)

U = EXPF(-(Y-1.)_ALP)

COFFA = GNIWG(M)_EAL

W = U_GN2/GN1

DO 43 J = 1,JMAX

COFXlJ = XI(M)W_(J-1)wCOFFA

COFX2J = X2(M}WW(J-1)wWwCOFFA

DO 43 LTAU = 1, ITAUMX

43 D(LTAUJJ,NU)=D(LTAU,J,NU)+PI(LTAU,NU)_COFXlJ'P2(LTAUtNU)_COFX2J

END

C
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SUBROUTINE RTAU (KMAX,F,RTAUV,LMAX,MAXMUM,WTGAUS_PTGAUS,MAXPT)

DIMENSION P(30,2) , G(16) , X(i6), RTAUV(15915,2)9 WTGAUS(I6)
DIMENSION PTGAUS(I6), F(15),RA(15,iS)

DO 39 K = I,MAXPT

G(K) = WTGAUS(K}

X(K) = PTGAUS(K)

G(K+ MAXPT) = G(K)

39, X(K+MAXPT) = -X(K)

MAXMUM = 2_KMAX + 7
DO ii J = i, MAXMUM

DO II K = I,LMAX

DO Ii M = 1,2

RTAUV(J,K,M) = O.
DO I0 NU = 1,2

DO 38 J = I,MAXMUM

DO 38 K = I,LMAX

38 RA (J,K) = O.

MAXPTS = 2_MAXPT

DO 43 M = !,MAXPTS
FP2 = O.

MAXKAT = KMAX + 3

CALL RTN(MAXKAT,I,P,X(M))

DO 47 IQ = I,MAXKAT ,2
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47 FP2 = FP2 + F(IQ)*P(IQ,1)
FSQUAR : FP2

CALL RTN (MAXMUM • NU• P• X(M))

PROD : FSQUAR*G(_)*(SQRTF(1.-X(MI_X(M)))**(NU-1)
DO 43 IA = I,LMAX

PRODUCT = PROD*X(M)**(IA-1)
DO 43 LTAU = IpMAXMUM

RA(LTAU,IA) = RA(LTAU,IA) + PRODUCT*P(LTAU,NU)
43 CONTINUE

DO 10 J = 1,MAXMUM

DO i0 K = 1"9 LMAX

RTAUV(J,K,NU} = RA(J•K)

I0 CONTINUE "+

END

178

C

C
SUBROUTINE RTN(LTAUMX,NU,P,X)

CALCULATES ASSOCIATED LEGENDRE POLYNO,ViIALS PTAUNU

DIMENSION P(30,2)
DO 1 M = 1,30

P(M,NU) = O.

P(1,1) = 1,

P(2,1) = X

P(2,2) = SQRTF(ABSF(1.-X_X))

P(3,2) = 3._XWP(2,2)

FNU = NU

LIMU = NU + 1

DO 44 LTAU = LIMU,L TAUMX
TAU = LTAU

440P(LTAU + I•NU) = I./(TAU - FNU +I°)_((2._TAU -1.)wX_

1P(LTAU,NU) - (TAU + FNU - 2.)_P(LTAU - 1,NU))

END

C
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Ii

SUBROUTINE QUADLEG(MAXKAT, F, BZ, NUMINTS,WTGAUS,PTGAUS,MAXGAU5)

DIMENSIONF(15),BZ(20),WTGAUS(50),PTGAUS(16),G(16),X(50),P(30,2)
DIMENSION FZ(20)

DO 39 K = 1,MAXGAUS

G(K) = WTGAUS(K)

X(K) = PTGAUS(K)
,/ , ,A_ I!G(_I",_XGA_S) = G(K)

X(K+MAXGAUS) = -X(K)

DO 11 J = 1, NUMINTS

BZ(J) = O.

MXGAUSS = 2_MAXGAUS
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47

43

DO 43 M = 1,MXGAUSS
FP2 = O.

CALL RTN(MAXKAT, 1, P,X(M}}
DO 47 IQ = I, MAXKAT,2

FP2 = FP2 + F(IQ}*P(IQ,1)
DO 43 IA = 19NUMINTS
BZ(IA} = BZ(IA} + X(M}**(IA-1)
CONTINUE
END

*FP2*G(M)
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38

43

SUBROUTINEQUADLAG(ALIMIT,SCALE,NUMINTS,LAGPTS,F,ARRAY,GTAU,SIGMA,
i WTLAG,PTLAG,MAXLAG)

DIMENSION WTLAG(I6 },PTLAG(I6 ), ARRAY{20), GTAU(3)

GNO(Y,Z) = Z*WSIGMA*(GTAU(I)+GTAU(2)*Y + GTAU(3)*Y*Y)
EAL = EXPF(-ALIMIT*SCALE}/SCALE

DO 38 L = i, NUMINTS

ARRAY {L) = O.

DO 43 M = I,MAXLAG

Y = PTLAG(M}/SCALE + ALIMIT

WAVEFU = GNO((Y-I.)/(Y+I.),Y+I.)

DO 43 N = i, NUMINTS

ARRAY(N} = ARRAY(N} + Y **(N-I}*WAVEFU*WTLAG(M}*EAL
END

C
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i0

38
41

39
40

FUNCTION VX(M,N,J,K,IP}

DIMENSION FZ(20),BZ(20),RTAUV(15,15,2),HPHI(8,8,15),HPHIA(8,8,15),

IVXMAT(SI90},MA(IOO),NA(IOO),JA(IOO},KA(IOO),IPA(IO0)

COMMON VXMAT,RTAUV,HPHI,HPHIA,FZ,BZ,MA,NA,JA,KA_IPA
VZIZER(M,N,J,K} = O.

VZTWO(M,N,J,K) = VZZER(M+2,N,J,K) +VZZER(M,N,J+2,K) +

IVZZER(M,N,J,K+2) -2.*VZZER(M,N,J,K) - 2o*VZZER(M+I,N+I,J+I,K+I)
2 -2.*VZIZER(H,N,J,K} +VZZER(M,N+2_J,K}

VZONE(M,N,J,K} = VZNEG(M+2,N,J,K) + VZNEG(M,N,J+2,K) + VZNEG(M,N,J

I,K+2} - 2.*VZNEG(M,N,J,K} - 2.*VZNEG(M+I,N+I,J+I,K$1}-2.*VZINEG
2(M,N,J,K} +VZNEG(M,N+2,J,K}

FORMAT(X52HTHE PROGRAM HAS EXCEEDED THE AVAILABLE NUMBER OF P,S}
FORMAT(X 2HX(,II2,IH,II29IH,II29IH,II2,IH_II292H}=IFIT.IO}

IF(J-2*(J/2))38,39,38

IF(K-2*(K/2})40,41_40

VX = O,
RETURN

IF(K-2*(K/2))4i,40,41

IF(IP}42,43,42
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43 IF(J-2*(J/2}}41,42,41

42 IF(M-5}44,44,3

44 IF(N-5)45,45,3

45 IF(J-5)46,46,3

46 IF(K-5)47,47,3
47 IF(IP-2}70,70,3

70 Y = VXMAT(M+I+6*N+36*J+216*K+I296*(IP+I))
IF(Y) 48,49,4B

48 CONTINUE

VX = Y

RETURN

49 COUNT = I.

GO TO 2

3 COUNT = 3,
PRINT 106,M,N,J,K,IP

106 FORMAT(24HOVERFLOW IN

2 IF(IP)159,160,161

160 VXW= VZZER(M+2,N,J,K)

GO TO 50
159 VXW: VZNEG

GO TO 50
161 IF (IP-2)
162 VXW= VZONE

GO TO 50
163 VXW= VZTWO
50 IF(COUNT -

52 NUMBER : M
VXMAT(NUMB

51 VX : VXW

END

FUNCTION VX 3X,5(12,2X))

- VZZER(M,N,J+2,K)

(M+2,N,J,K) - VZNEG(M,N,J+2,K)

162,163,163
(M+2,N,J,K) - VZONEIM,N,J+2,K)

(M+2,N,J,K} - VZTWO(M,N,J+2,K)
2.) 52,52,51

+I+6*N+36*J+216*K+I296*(IP+I)

ER) : VXW
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4

FUNCTION VZZER(MO,NO,JO,KO}

DIMENSION FZ(20),BZ(20),RTAUV(15,15,2},HPHI(8,8,15),HPHIA(8,8,15)t
IVXMAT(5190),MA(IOO),NA(IOO},JA(IOO),KA(IOO),IPA(IO0)

COMMON VXMAT,RTAUV,HPHI,HPHIA,FZ,BZ,MA,NA,JA,KA,IPA

IF(JO-2*(JO/2))2,2,3
IF(KO-2*(KO/2))4,4,3

VZZER : O.

RETURN

VZZER : FZ(MO+I)*FZ(NO+I)*BZ(JO+I)*BZ(KO+I)

END

C
FUNCTION VZNEG(M,N,J,K)
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DIMENSION TE(2)

DIMENSION FZ(20),BZ(20),RTAUV(15,15_2)_HPHI(8,B,15),HPHIA(8,8,15),

1VXMAT(5190},MA(100},NA(100),JA(lOO),KA(lOO)gIPA(lO0)

COMMON VXMATgRTAUV,HPHI,HPHIAtFZ_BZ,MA_NA_JA,KAtIPA

FORMAT(///2E17.lO,///,23HTO0 MANY TAUS IN VZNEG )
IF (J-2*(J/2))38,39,38

IF (K-2*(K/2) }40,41,40

VZNEG = O.

RETURN

IF (K-2*(K/2))41_40_41

CONTINUE

TERM = O.

SUMM = O.

LTAU = 0

I = 0

LTAU = LTAU + 1

T = LTAU - 1
I : I+l

TE(1)= (2.*T+I.}*RTAUV(LTAU,J+I,1)*

i HPHI(M+I,N+I_LTAU)

IF(I-2} 3,5,5

I = 0

TERM = TE(I} + TE(2)
TE(1} = O.

TE(2) = O.

SUMM = SUMM + TERM

IF (LTAU-15)B,9,9

CONTINUE

PRINT 90, TERM,SUMM

GO TO 1

CONTINUE

IF (ABSF (TERM/SUMM}-. 1E-7 )1,3_3

CONTINUE
•VZNEG = SUMM

END

RTAUV (LTAU,K+I _i )

9O

38

41

FUNCTION VZINEG(M,NtJ,K)

DIMENSION TE(2}

DIMENSION FZ(20),BZ(20),RTAUV(15,15,2),HPHI(8,B,15)gHPHIA(8,8_15},
1VXMAT(5190)_MA(100),NA(100),JA(100),KA(100),IPA(100)
COMMON VXMAT,RTAUV,HPHI,HPHIA_FZ,BZ,MAgNA,JA,KAtIPA

FORMAT(///2E17.10,///,23HTO0 MANY TAU5 IN VZINEG)
IF (J-2_(J/2))38,39,38
IF(K-2_(K/2})40_419_O
VZ1NEG = O,
RETURN
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39 IF(K-2*(K/2))41,40941

40 CONTINUE

SUMN = O.

TERM = Oo

I=O
LTAU = 1

3 LTAU = LTAU + 1

T = LTAU - 1

I = I+1

TE(I) = -1./(T*(T+I.) }*RTAUV(LTAU,J+I,2)*RTAUV (LTAU,K+I_2)*
i (2.*T+1.) I(T*(T+I.)) *HPHIA(M+I,N+I_LTAU)
IFCl-2) 3,5,5

I=O

TERM = TE(1) + TE(2)

TE(1) = O.

TE(2) = O.

4 SUMM = SUMM + TERM

IF(LTAU-15)8,9,9

9 CONTINUE

PRINT 90, TERM,SUMM
GO TO 1

8 CONTINUE

C THE LIMIT .1E-7 SHOULD BE EXPERIMENTED WITH

IF IABSF(TERM/SUMM)-.IE-7)I,3,3
1 CONTINUE

VZINEG = SUMM

END
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3. Program Highen

Definition of Symbols and Arrays

Nthlim designates the order of the wave function desired° The

basis set is stored in the Arrays mat(i), nat(i), jat(i), kat_i),

th th
and ipat(i). Cterm(m,n) contains the m coefficient of the n

th
order wave function. Eps(n) contains the n order energy°

Operatin_ Procedure

th
The program calculates the n order wave function from

Eqs(II.D-9) and (IIoD-IO). Rzero, mn - the number of terms in

the basis set-, enzero, cofrho, cofnom, coeffl_ va, summit, enzere_

enone, mat, nat_ jat_ kat, and ipat are read from tape or punched

cards. The energy through (2n + i) th order is then calculated°
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PROGRAM HIGHEN

DIMENSION COEFFI(50'50),MAT(IOO),NAT(IOO),JAT(IO0)

DIMENSION KAT(IOO),IPAT(IOO),BMAT(50),VCHECK(50},CX(50),CY(50)

COMMON/BLOCKB/ZEREPS(81),EPS(BO),CTERM(50,40),COFNOM(50,50),
1COFRHO(50,SO),MNTERM(40)

COMMON/BLOCK4/SUMMIT(50),VA(50),STOREN(40,40)
EQUIVALENCE(EPS(1),ZEREPS(2))

20 FORMAT(BX,I2/,(1B(SII,lX)))

30 FORMAT(//,20X,26HTHE DISSOCIATION ENERGY IS, F7.5//)

67 FORMAT(XSHETWO=E17.10)

72 FORMAT(1HI,4(/),40X,39HTHE VALUES OF THE VARIOUS ORDERS OF THE/40X

1,40HCOEFFICIENTS ARE LISTED BELOW ALONG WITH /,51X,15HTHE TOTAL VA

2LUE)
74 FORMAT(

1 4(/),35X,ilHCOEFFICIENT,20X,18HTOTAL CONTRIBUTION /35X,512,

2 23X,F15.10//,22X,4(5HORDER,1X, 12HCONTRIBUTION,2X)/(22X,4(1X,

3 12,2X,FIS.IO)))

93 FORMAT(X7HENZERO=E17.10, 6HENONE= ElT.lO)

139 FORMAT(X6HENTRE=,E!7.10)

197 FORMAT(IHI,4(/),57X,2HR=,F5.2,4(/),4X,5HORDER,9X,6HENERGY,IOX,9HES

IUM A.U.,9X,9H DIE.V.) ,IOX,_HII/RiZ),12X,4HDIFF,IIX,gHW.F.TERMS//)
297 FORMAT(IHI,2(/I),52X,i6HENERGY OF HEHE+2,

1 4(/),57X,2HR=,F5.2,4(./),4X,5HORDER,9X,6HENERGY,IOX,9HES

2UM A.U.,9X,9H D(E.V.) ,IOX,7H(I/RI2),9X,IOHESUM + I/R,BX,9HW.F.TER
3MS//)

291 FORMAT(1H1)

198 FORMAT(6X,I2,kX,5(2X,F14.10,2X),SX,I3)

201 FORMAT(//38HTHE ENERGY DIFFERENCE IS NOW EQUAL TO ,E17°10)

467 FORMAT(3X,/,3(7HVCHECK( i2,2H)=,EIT.lO,kX))

Iiii FORMATi9OX,12,3HMIN, 2X,12,3HSEC, 3X,12,6HSEC/60)
407 FORMAT(3X,6HRZERO= ,

IM COEFF VA AND SUMMIT

916 FORMAT(3X,4EI7.10)

-769 CONTINUE

FS.2,3X,14HFUNCTION

FOLLOW /(4E20.I0))

SIZE= ,12,40HCOFRHO COFNO

C NTHLIM IS THE ORDER OF THE WAVE FUNCTION DESIRED

NTHLIM = 5

READ

i

2M(I,JO), I = I,MN),JO= I,MN),((COEFFI(I,JO),I =

3 (VA(I),I=I,MN),(SUMMITII),I=Z,MN),ENZERO,ENONE,

4 (MAT(1),NAT(1),JAT(1),_AT(i),IPAT(1),I=I,MN)

IF(EOF,47)I742,1743

1742 STOP

i743 CONTINUE

TAPE 47,

RZERO,MN,ENZERO,((COFRHO(i,JO),I=I,MN),JO= I,MN),((COFNO

1,MN),JO= 1,MN),
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PI = 3.141592653

DO 987 I = 1,50

DO 987 J = 1,40
98? CTERM(I,J) = O.

DO 505 I = I,MN

DO 505 J = I,MN

505 COFRHO(I,J) = COFRHO(I,J) - ENONE_COFNOM(I,J)
MORE = I

MN = MN + 1

DO 71 IDONT = 1,MORE
MN = MN - 1

IF(MN)71,71,1139

I139 CONTINUE

DO 307 I = 1,MN

MAT(I+MN) = NAT(I)

NAT(I+MN) = MAT(1)
JAT(I+MN) = KAT(I)

KAT(I+MN) = JAT(I)

307 IPAT(I+MN) = IPAT(I)
DO 506 I = 1,MN

506 BMAT(1) = VA(I)

CALL AMATSAV(MN,COEFFI,BMAT,VA,PI,DET)
DO 508 I = 1,MN

508 VCHECK(I) = O.

DO 507 I = 1,MN

DO 507 J = I,MN

507 VCHECK(1) = VCHECK(1) + BMAT(J)_COEFFi(I,J)
DO 509 I = 1,MN

VCHECK(I) = (VCHECK(1) - VA(i))/VA(I)

IF(VCHECK(1) - 1.E-8) 509,509,520
520 CONTINUE

PRINT 467,I,VCHECK(I)

509 CONTINUE

SUMI = O.

SUM2 = O.

DO 511 I = I,MN

SUMI = SUMI + BMAT (1)_VA(1)
DO 511 J = I,MN

511 SUM2 = SUM2 + BMAT(I)_BMATIJ)_COEFFI(i,J)

ETWO = SUM2 -2._SUMI
SUMII = 0.

SUM22 = O.

DO 512 I = I,MN

SUMII = SUMII + SUMMIT(i)_BMAT(1)

DO 512 J = I,MN

512 SUM22 = SUM22 + BMAT(I)_BMAT(J)_COFRHOCI,J)
PSI iO = SUMII
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PSIOI = PSIIO

PSIZRI = PSIIO

ENTRE = SUM22 -2.*ETWO*SUMII

DIFF = -1.888734- (ENZERO + ENONE + ETWO + ENTRE}

DIS = -(DIFF+ .888734-1./RZERO)*27.20974

DO 525 I = 1,MN

525 CTERM(I,I) = BMAT(I}

DO 576 1 = 1,40

576 MNTERM(1) = MN

DO 577 I = 1,40

DO 577 J = 1,40

577 STOREN (I,J) =0

EPS(1) = ENONE

EPS(2) = ETWO

EPS (3) = ENTRE

DO 550 NORDER = 2,NTHLIM

CALL KTIME(MIN,KSEC,DD) $ PRINT 1111,MIN,KSEC,DD

MN = MNTERM(NORDER)

CALL BMATGET(BMAT,MN,NORDER)
DO 551 I = 1,MN

551 CTERM(I,NORDER) = BMAT(I)
CALL AMATSAV(MN,COEFF1, BMAT,VA,PI,DET_P

DO 552 I = I,MN

VCHECKII) = 0
DO 553 J = 1,MN

553 VCHECK(I) = VCHECK(1) + 5MAT(J) * COEFFI(I,J)

552 VCHECK(1) = VCHECK(1) - CTERM(I,NORDER)

C )NM,I = I , )I(KCEHCV,I(

DO 554 I = I,MN
554 CTERM(I, NORDER) = BMAT(1)

SUM1 = 0
LIM2 = 2*NORDER - 1
DO 560 I = 2,LIM2
SUM 2 = O.

LIM3 = NORDER - I

DO 561 J = LIM3,NORDER

561 SUM2 = SUM2 + FNORMAL(J,2*NORDER-I-J)

560 SUM1 = SUMI + EPS(I)*SUM2

NTWO = 2*NORDER
MINORD : NORDER - 1

DO 569 I = I,MN

CX(l ) : CTERM(I,NORDER)

569 CY(1) = CTERM(I,MINORD}

MNT = MNTERM(NORDER-1)

EPS(_T,n,, ,,_} = ADDMAT(CX,CX,COEFFI,VA,I,MN,MN)

1 + 2*ADDMAT(CX,CY,COFRHO,VA,1,MN,MNT)- SUM1

LIM1 = 2*NORDER

SUM4 = 0
DO 563 I = 2,LIMI

,764 TNIR
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SUM 5 = 0
LIM2 = NORDER + 1 - I

DO 564 J = LIM2,NORDER

SUM5 = SUM5 + FNORMAL (J,2*NORDER + I - I - J)
SUM4 = SUM4 + EPS(I) * SUM5

NTWO ONE = NTWO + i

EPS (NTWOONE) = ADDMAT (CX,CX, COFRHO,VA,1,MN,MN) - SUM4
CONTINUE

PRINT 197 , RZERO

ZEREPS(1) = ENZERO
SUM = 0

LOW = 0

EEXACT = -1.888734

RAV = 0

DO 570 I = LOW,NTWOONE

RAV = RAV + (I+I)*EPS(I+I)

SUM = SUM + EPS(1)

DIFF = EEXACT - SUM
DIS = -(DIFF+ .888734-1./RZERO)*27.20974
PRINT 198,I,EPS(1),SUM,D!S,RAV,DIFF,MN

CONTINUE

PRINT 72
RHALF = RZERO/2

PRINT 297,RHALF

EKR = 1.5 "':_
HE2KP = 0
R12 = 0
DO 572 1 = LOW,NTWOONE
IPRIME = 2-I
HE2ENER=2o**IPRIME*EPS(1)
HE2KP = HE2KP + HE2ENER
FINALEN = -4
ENPLR = HE2KP + 4/RHALF

DISOSEN = (FINALEN - ENPLR)*27.20974

DIFF = EKR-HE2ENER

R12 = R12 + I*HE2ENER

PRINT 198,I,HE2ENER,HE2_P,DISOSEN,RI2,ENPLR,MN

CONTINUE

PRINT 291

DO 71 I = I,MN
SUMC = 0

DO 70 J = I,NTHLIM

SUMC = SUMC + CTERM(I,J)

PRINT 74, MAT(I),NAT(1),JAT(1),KAT(1),IPAT(1),SUMC,(II,CTERM(I,II),
!,!!=!,NTHLIM)

CONTINUE

CONTINUE

GO TO 769

END

r
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SUBROUTINE AMATSAV(MN,COEFFI,BMAT,VA,PI,DET)

DIMENSION AMATI50,50),COEFFI(50,50)_BMAT(50

DO 50 1 = I,MN

DO 50 J = I,MN

AMAT(I,J) = COEFFI(I,J}
NQ = 1
CALL MATINV(AMAT,MN,BMAT,NQ,DET,50)
END

),VA(50)

3

2
1

SUBROUTINE BMATGET(BMAT,MN,NORDER)

COMMON/BLOCK3/ZEREPS(BI),EPS(80),CTERM(50,40),COFNOM(50,50),

1COFRHO(50,50),MNTERM(40)
COMMON/BLOCK4/SUMMIT(50),VA(50),STOREN{4Q,40)
EQUIVALENCE(EPS(1),ZEREPS(2))
DIMENSION BMAT(50)
DO 1 I = I,MN
SUM1 = 0
SUM3 = 0
DO 2 J = 1,MN
SUM3 = SUM3 + CTERM(J,NORDER-1)*COFRHO(I,J)
LIM = NORDER-I
SUM2 = 0

DO 3 K = 2,LIM

SUM2 = SUM2 + EPS(K)*CTERN(J,NORDER-K)

SUM1 = SUMI + SUM2 *COFNOM(I,J)

BMAT(1) = EPS(NORDER)*SUMMIT(1) + SUMI

END

- SUM3
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FUNCTION FNORMAL (J, K)

COMMON/BLOCK3/ZEREPS(81),EPS(80),CTERN(50,40},COFNOM(50,50),

1COFRHO(50,50),MNTERM(40)

COMMON/BLOCK4/SUMNIT(50),VA(50),STOREN(40,40)

DIMENSION CX(50), CY(50)

EQUIVALENCE(EPS(1),ZEREPS(2))

M = XMAXOF(J,K)

N = XMINOF(J,K)

MONE = M+ 1

NONE = N+I

MN = MNTERM(M)

MX = MNTERM(N)

IF(N) 1,3,3

IF ( STOREN(MONE,NONE}) 4,5,4
DO 7 I = 1,50

CX(1) CTERM(I,M)

CY(I) = CTERM(I,N)

IF(N) 8,8,9

STOREN(MONE,NONE) = ADDMAT(CX,CY,COFNOM,SUMMIT,2,MN,MX}

FNORMAL = STOREN(MONE,NO_E)
RETURN

STOREN(MONE,NONE} = ADDMAT(CX,CY,COFNOM,VA,I,MN,MX)
FNORMAL = STOREN(MONE,NONE)

RETURN
FNORMAL = 0

RETURN

FNORMAL = STOREN(MONE,NONE)
RETURN
END

111

FUNCTION ADDMAT(COF1,COF2,SQRMAT,VECT,IPAR,MN,M1)

DIMENSION COFI(50),COF2(50),SQRMAT(50,50),VECT(50)

IF(IPAR-1)I,1,2
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1 SUMM = O.

DO 21 I = 1,MN
DO 21 J = I,M1

21 SUMM = SUMM + COFI(1)_COFZ(J}* SQRMAT{I,J)
ADDMAT = SUMM

RETURN

2 SUMM = O.

DO 22 I = 1,MN

22 SUMM = SUMM + COFI{I}_-VECT(I)

ADDMAT = SUMM

END

END

i90


